ﻻ يوجد ملخص باللغة العربية
A thick-restart Lanczos type algorithm is proposed for Hermitian $J$-symmetric matrices. Since Hermitian $J$-symmetric matrices possess doubly degenerate spectra or doubly multiple eigenvalues with a simple relation between the degenerate eigenvectors, we can improve the convergence of the Lanczos algorithm by restricting the search space of the Krylov subspace to that spanned by one of each pair of the degenerate eigenvector pairs. We show that the Lanczos iteration is compatible with the $J$-symmetry, so that the subspace can be split into two subspaces that are orthogonal to each other. The proposed algorithm searches for eigenvectors in one of the two subspaces without the multiplicity. The other eigenvectors paired to them can be easily reconstructed with the simple relation from the $J$-symmetry. We test our algorithm on randomly generated small dense matrices and a sparse large matrix originating from a quantum field theory.
We propose a thick-restart block Lanczos method, which is an extension of the thick-restart Lanczos method with the block algorithm, as an eigensolver of the large-scale shell-model calculations. This method has two advantages over the conventional L
A novel orthogonalization-free method together with two specific algorithms are proposed to solve extreme eigenvalue problems. On top of gradient-based algorithms, the proposed algorithms modify the multi-column gradient such that earlier columns are
Problems with localized nonhomogeneous material properties arise frequently in many applications and are a well-known source of difficulty in numerical simulations. In certain applications (including additive manufacturing), the physics of the proble
Pole-swapping algorithms are generalizations of bulge-chasing algorithms for the generalized eigenvalue problem. Structure-preserving pole-swapping algorithms for the palindromic and alternating eigenvalue problems, which arise in control theory, are
A thorough backward stability analysis of Hotellings deflation, an explicit external deflation procedure through low-rank updates for computing many eigenpairs of a symmetric matrix, is presented. Computable upper bounds of the loss of the orthogonal