ترغب بنشر مسار تعليمي؟ اضغط هنا

A Fat boundary-type method for localized nonhomogeneous material problems

153   0   0.0 ( 0 )
 نشر من قبل Alex Viguerie PhD
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Problems with localized nonhomogeneous material properties arise frequently in many applications and are a well-known source of difficulty in numerical simulations. In certain applications (including additive manufacturing), the physics of the problem may be considerably more complicated in relatively small portions of the domain, requiring a significantly finer local mesh compared to elsewhere in the domain. This can make the use of a uniform mesh numerically unfeasible. While nonuniform meshes can be employed, they may be challenging to generate (particularly for regions with complex boundaries) and more difficult to precondition. The problem becomes even more prohibitive when the region requiring a finer-level mesh changes in time, requiring the introduction of refinement and derefinement techniques. To address the aforementioned challenges, we employ a technique related to the Fat boundary method as a possible alternative. We analyze the proposed methodology, from a mathematical point of view and validate our findings on two-dimensional numerical tests.

قيم البحث

اقرأ أيضاً

This paper presents a steady-state and transient heat conduction analysis framework using the polygonal scaled boundary finite element method (PSBFEM) with polygon/quadtree meshes. The PSBFEM is implemented with commercial finite element code Abaqus by the User Element Sub-routine (UEL) feature. The detailed implementation of the framework, defining the UEL element, and solving the stiffness/mass matrix by the eigenvalue decomposition are presented. Several benchmark problems from heat conduction are solved to validate the proposed implementation. Results show that the PSBFEM is reliable and accurate for solving heat conduction problems. Not only can the proposed implementation help engineering practitioners analyze the heat conduction problem using polygonal mesh in Abaqus, but it also provides a reference for developing the UEL to solve other problems using the scaled boundary finite element method.
A Lagrangian-type numerical scheme called the comoving mesh method or CMM is developed for numerically solving certain classes of moving boundary problems which include, for example, the classical Hele-Shaw flow problem and the well-known mean curvat ure flow problem. This finite element scheme exploits the idea that the normal velocity field of the moving boundary can be extended throughout the entire domain of definition of the problem using, for instance, the Laplace operator. Then, the boundary as well as the finite element mesh of the domain are easily updated at every time step by moving the nodal points along this velocity field. The feasibility of the method, highlighting its practicality, is illustrated through various numerical experiments. Also, in order to examine the accuracy of the proposed scheme, the experimental order of convergences between the numerical and manufactured solutions for these examples are also calculated.
In this paper, we examine the effectiveness of classic multiscale finite element method (MsFEM) (Hou and Wu, 1997; Hou et al., 1999) for mixed Dirichlet-Neumann, Robin and hemivariational inequality boundary problems. Constructing so-called boundary correctors is a common technique in existing methods to prove the convergence rate of MsFEM, while we think not reflects the essence of those problems. Instead, we focus on the first-order expansion structure. Through recently developed estimations in homogenization theory, our convergence rate is provided with milder assumptions and in neat forms.
An interface/boundary-unfitted eXtended hybridizable discontinuous Galerkin (X-HDG) method of arbitrary order is proposed for linear elasticity interface problems on unfitted meshes with respect to the interface and domain boundary. The method uses p iecewise polynomials of degrees $k (>= 1)$ and $k-1$ respectively for the displacement and stress approximations in the interior of elements inside the subdomains separated by the interface, and piecewise polynomials of degree $k$ for the numerical traces of the displacement on the inter-element boundaries inside the subdomains and on the interface/boundary of the domain. Optimal error estimates in $L^2$-norm for the stress and displacement are derived. Finally, numerical experiments confirm the theoretical results and show that the method also applies to the case of crack-tip domain.
A thick-restart Lanczos type algorithm is proposed for Hermitian $J$-symmetric matrices. Since Hermitian $J$-symmetric matrices possess doubly degenerate spectra or doubly multiple eigenvalues with a simple relation between the degenerate eigenvector s, we can improve the convergence of the Lanczos algorithm by restricting the search space of the Krylov subspace to that spanned by one of each pair of the degenerate eigenvector pairs. We show that the Lanczos iteration is compatible with the $J$-symmetry, so that the subspace can be split into two subspaces that are orthogonal to each other. The proposed algorithm searches for eigenvectors in one of the two subspaces without the multiplicity. The other eigenvectors paired to them can be easily reconstructed with the simple relation from the $J$-symmetry. We test our algorithm on randomly generated small dense matrices and a sparse large matrix originating from a quantum field theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا