ﻻ يوجد ملخص باللغة العربية
The use of case-crossover designs has become widespread in epidemiological and medical investigations of transient associations. However, the most popular reference-select strategy, the time-stratified schema, is not a suitable solution for controlling bias in case-crossover studies. To prove this, we conducted a time series decomposition for daily ozone (O3) records; scrutinized the ability of the time-stratified schema on controlling the yearly, monthly and weekly time trends; and found it failed on controlling the weekly time trend. Based on this finding, we proposed a new logistic regression approach in which we did adjustment for the weekly time trend. A comparison between the traditional model and the proposed method was done by simulation. An empirical study was conducted to explore potential associations between air pollutants and AMI hospitalizations. In summary, time-stratified schema provide effective control on yearly and monthly time trends but not on weekly time trend. Therefore, the estimation from the traditional logistical regression basically reveals the effect of weekly time trend, instead of the transient effect. In contrast, the proposed logistic regression with adjustment for weekly time trend can effectively eliminate system bias in case-crossover studies.
Typically, case-control studies to estimate odds-ratios associating risk factors with disease incidence from logistic regression only include cases with newly diagnosed disease. Recently proposed methods allow incorporating information on prevalent c
The case-crossover design (Maclure, 1991) is widely used in epidemiology and other fields to study causal effects of transient treatments on acute outcomes. However, its validity and causal interpretation have only been justified under informal condi
Panel studies typically suffer from attrition, which reduces sample size and can result in biased inferences. It is impossible to know whether or not the attrition causes bias from the observed panel data alone. Refreshment samples - new, randomly sa
Can two separate case-control studies, one about Hepatitis disease and the other about Fibrosis, for example, be combined together? It would be hugely beneficial if two or more separately conducted case-control studies, even for entirely irrelevant p
We propose a method to test for the presence of differential ascertainment in case-control studies, when data are collected by multiple sources. We show that, when differential ascertainment is present, the use of only the observed cases leads to sev