ترغب بنشر مسار تعليمي؟ اضغط هنا

Combining case-control studies for identifiability and efficiency improvement in logistic regression

131   0   0.0 ( 0 )
 نشر من قبل Wenlu Tang
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Can two separate case-control studies, one about Hepatitis disease and the other about Fibrosis, for example, be combined together? It would be hugely beneficial if two or more separately conducted case-control studies, even for entirely irrelevant purposes, can be merged together with a unified analysis that produces better statistical properties, e.g., more accurate estimation of parameters. In this paper, we show that, when using the popular logistic regression model, the combined/integrative analysis produces a more accurate estimation of the slope parameters than the single case-control study. It is known that, in a single logistic case-control study, the intercept is not identifiable, contrary to prospective studies. In combined case-control studies, however, the intercepts are proved to be identifiable under mild conditions. The resulting maximum likelihood estimates of the intercepts and slopes are proved to be consistent and asymptotically normal, with asymptotic variances achieving the semiparametric efficiency lower bound.



قيم البحث

اقرأ أيضاً

Labeling patients in electronic health records with respect to their statuses of having a disease or condition, i.e. case or control statuses, has increasingly relied on prediction models using high-dimensional variables derived from structured and u nstructured electronic health record data. A major hurdle currently is a lack of valid statistical inference methods for the case probability. In this paper, considering high-dimensional sparse logistic regression models for prediction, we propose a novel bias-corrected estimator for the case probability through the development of linearization and variance enhancement techniques. We establish asymptotic normality of the proposed estimator for any loading vector in high dimensions. We construct a confidence interval for the case probability and propose a hypothesis testing procedure for patient case-control labelling. We demonstrate the proposed method via extensive simulation studies and application to real-world electronic health record data.
101 - Moo K. Chung 2020
For random field theory based multiple comparison corrections In brain imaging, it is often necessary to compute the distribution of the supremum of a random field. Unfortunately, computing the distribution of the supremum of the random field is not easy and requires satisfying many distributional assumptions that may not be true in real data. Thus, there is a need to come up with a different framework that does not use the traditional statistical hypothesis testing paradigm that requires to compute p-values. With this as a motivation, we can use a different approach called the logistic regression that does not require computing the p-value and still be able to localize the regions of brain network differences. Unlike other discriminant and classification techniques that tried to classify preselected feature vectors, the method here does not require any preselected feature vectors and performs the classification at each edge level.
We propose a penalized likelihood method that simultaneously fits the multinomial logistic regression model and combines subsets of the response categories. The penalty is non differentiable when pairs of columns in the optimization variable are equa l. This encourages pairwise equality of these columns in the estimator, which corresponds to response category combination. We use an alternating direction method of multipliers algorithm to compute the estimator and we discuss the algorithms convergence. Prediction and model selection are also addressed.
120 - HaiYing Wang 2018
In this paper, we propose improved estimation method for logistic regression based on subsamples taken according the optimal subsampling probabilities developed in Wang et al. 2018 Both asymptotic results and numerical results show that the new estim ator has a higher estimation efficiency. We also develop a new algorithm based on Poisson subsampling, which does not require to approximate the optimal subsampling probabilities all at once. This is computationally advantageous when available random-access memory is not enough to hold the full data. Interestingly, asymptotic distributions also show that Poisson subsampling produces a more efficient estimator if the sampling rate, the ratio of the subsample size to the full data sample size, does not converge to zero. We also obtain the unconditional asymptotic distribution for the estimator based on Poisson subsampling. The proposed approach requires to use a pilot estimator to correct biases of un-weighted estimators. We further show that even if the pilot estimator is inconsistent, the resulting estimators are still consistent and asymptotically normal if the model is correctly specified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا