ﻻ يوجد ملخص باللغة العربية
Within the transonic regime, the aeroelastic problems exhibit many unique characteristics compared with subsonic and supersonic cases. Although a lot of research has been carried out in this field, the underlying mechanisms of these complex phenomena are not clearly understood yet, resulting in a challenge in the design and use of modern aircraft. This review summarizes the recent investigations on nonclassical transonic aeroelastic problems, including transonic buzz, reduction of transonic buffet onset, transonic buffeting response and frequency lock-in phenomenon in transonic buffet flow. After introducing the research methods in unsteady aerodynamics and aeroelastic problems, the dynamical characteristics as well as the physical mechanisms of these phenomena are discussed from the perspective of the fluid mode. In the framework of the ROM (reduced order model) -based model, the dominant fluid mode (or the eigenvalue) and its coupling process with the structural model can be clearly captured. The flow nonlinearity was believed to be the cause of the complexity of transonic aeroelasticity. In fact, this review indicates that the complexity lies in the decrease of the flow stability in the transonic regime. In this condition, the fluid mode becomes a principal part of the coupling process, which results in the instability of the fluid mode itself or the structural mode, and thus, it is the root cause of different transonic aeroelastic phenomena.
How to determine accurately and efficiently the aerodynamic forces of the aircraft in high-speed flow is one of great challenges in modern aerodynamics. In this Letter we propose a new similarity law for steady transonic-supersonic flow over thin bod
This paper deals with the small oscillations of two circular cylinders immersed in a viscous stagnant fluid. A new theoretical approach based on an Helmholtz expansion and a bipolar coordinate system is presented to estimate the fluid forces acting o
The shear resulting from internal wave reflections can play a crucial role in the transport and resuspension of sediments in oceanic conditions. In particular, when these waves undergo a textit{critical reflection} phenomenon, the reflected wave can
Effects of a gurney flap were numerically investigated on the supercritical NASA airfoil by solving the two-dimensional Reynolds-averaged Navier-Stokes equations for a range of transonic Mach numbers and angles of attack, using turbulence compressibl
In this paper, we derive a viscous generalization of the Dysthe (1979) system from the weakly viscous generalization of the Euler equations introduced by Dias, Dyachenko, and Zakharov (2008). This viscous Dysthe system models the evolution of a weakl