ترغب بنشر مسار تعليمي؟ اضغط هنا

Negative Statements Considered Useful

109   0   0.0 ( 0 )
 نشر من قبل Hiba Arnaout
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Knowledge bases (KBs) about notable entities and their properties are an important asset in applications such as search, question answering and dialogue. All popular KBs capture virtually only positive statements, and abstain from taking any stance on statements not stored in the KB. This paper makes the case for explicitly stating salient statements that do not hold. Negative statements are useful to overcome limitations of question answering systems that are mainly geared for positive questions; they can also contribute to informative summaries of entities. Due to the abundance of such invalid statements, any effort to compile them needs to address ranking by saliency. We present a statisticalinference method for compiling and ranking negative statements, based on expectations from positive statements of related entities in peer groups. Experimental results, with a variety of datasets, show that the method can effectively discover notable negative statements, and extrinsic studies underline their usefulness for entity summarization. Datasets and code are released as resources for further research.



قيم البحث

اقرأ أيضاً

126 - Sebastiano Vigna 2007
This note argues about the validity of web-graph data used in the literature.
Triplet loss is an extremely common approach to distance metric learning. Representations of images from the same class are optimized to be mapped closer together in an embedding space than representations of images from different classes. Much work on triplet losses focuses on selecting the most useful triplets of images to consider, with strategies that select dissimilar examples from the same class or similar examples from different classes. The consensus of previous research is that optimizing with the textit{hardest} negative examples leads to bad training behavior. Thats a problem -- these hardest negatives are literally the cases where the distance metric fails to capture semantic similarity. In this paper, we characterize the space of triplets and derive why hard negatives make triplet loss training fail. We offer a simple fix to the loss function and show that, with this fix, optimizing with hard negative examples becomes feasible. This leads to more generalizable features, and image retrieval results that outperform state of the art for datasets with high intra-class variance.
Fine-grained Named Entity Recognition is a task whereby we detect and classify entity mentions to a large set of types. These types can span diverse domains such as finance, healthcare, and politics. We observe that when the type set spans several do mains the accuracy of the entity detection becomes a limitation for supervised learning models. The primary reason being the lack of datasets where entity boundaries are properly annotated, whilst covering a large spectrum of entity types. Furthermore, many named entity systems suffer when considering the categorization of fine grained entity types. Our work attempts to address these issues, in part, by combining state-of-the-art deep learning models (ELMo) with an expansive knowledge base (Wikidata). Using our framework, we cross-validate our model on the 112 fine-grained entity types based on the hierarchy given from the Wiki(gold) dataset.
59 - V. Lorini , Ispra 2019
This paper describes a prototype system that integrates social media analysis into the European Flood Awareness System (EFAS). This integration allows the collection of social media data to be automatically triggered by flood risk warnings determined by a hydro-meteorological model. Then, we adopt a multi-lingual approach to find flood-related messages by employing two state-of-the-art methodologies: language-agnostic word embeddings and language-aligned word embeddings. Both approaches can be used to bootstrap a classifier of social media messages for a new language with little or no labeled data. Finally, we describe a method for selecting relevant and representative messages and displaying them back in the interface of EFAS.
Answering natural language questions over tables is usually seen as a semantic parsing task. To alleviate the collection cost of full logical forms, one popular approach focuses on weak supervision consisting of denotations instead of logical forms. However, training semantic parsers from weak supervision poses difficulties, and in addition, the generated logical forms are only used as an intermediate step prior to retrieving the denotation. In this paper, we present TAPAS, an approach to question answering over tables without generating logical forms. TAPAS trains from weak supervision, and predicts the denotation by selecting table cells and optionally applying a corresponding aggregation operator to such selection. TAPAS extends BERTs architecture to encode tables as input, initializes from an effective joint pre-training of text segments and tables crawled from Wikipedia, and is trained end-to-end. We experiment with three different semantic parsing datasets, and find that TAPAS outperforms or rivals semantic parsing models by improving state-of-the-art accuracy on SQA from 55.1 to 67.2 and performing on par with the state-of-the-art on WIKISQL and WIKITQ, but with a simpler model architecture. We additionally find that transfer learning, which is trivial in our setting, from WIKISQL to WIKITQ, yields 48.7 accuracy, 4.2 points above the state-of-the-art.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا