ﻻ يوجد ملخص باللغة العربية
In this paper, the existence and uniqueness of strong axisymmetric solutions with large flux for the steady Navier-Stokes system in a pipe are established even when the external force is also suitably large in $L^2$. Furthermore, the exponential convergence rate at far fields for the arbitrary steady solutions with finite $H^2$ distance to the Hagen-Poiseuille flows is established as long as the external forces converge exponentially at far fields. The key point to get the existence of these large solutions is the refined estimate for the derivatives in the axial direction of the stream function and the swirl velocity, which exploits the good effect of the convection term. An important observation for the asymptotic behavior of general solutions is that the solutions are actually small at far fields when they have finite $H^2$ distance to the Hagen-Poiseuille flows. This makes the estimate for the linearized problem play a crucial role in studying the convergence of general solutions at far fields.
In this paper, we investigate the nonhomogeneous boundary value problem for the steady Navier-Stokes equations in a helically symmetric spatial domain. When data is assumed to be helical invariant and satisfies the compatibility condition, we prove t
In this paper, we investigate the decay properties of an axisymmetric D-solutions to stationary incompressible Navier-Stokes systems in $mathbb{R}^3$. We obtain the optimal decay rate $|{bf u}(x)|leq frac{C}{|x|+1}$ for axisymmetric flows without swi
We consider a full Navier-Stokes and $Q$-tensor system for incompressible liquid crystal flows of nematic type. In the two dimensional periodic case, we prove the existence and uniqueness of global strong solutions that are uniformly bounded in time.
In this paper, we are concerned with the local-in-time well-posedness of a fluid-kinetic model in which the BGK model with density dependent collision frequency is coupled with the inhomogeneous Navier-Stokes equation through drag forces. To the best
We study the long-time behavior an extended Navier-Stokes system in $R^2$ where the incompressibility constraint is relaxed. This is one of several reduced models of Grubb and Solonnikov 89 and was revisited recently (Liu, Liu, Pego 07) in bounded do