ﻻ يوجد ملخص باللغة العربية
We consider a full Navier-Stokes and $Q$-tensor system for incompressible liquid crystal flows of nematic type. In the two dimensional periodic case, we prove the existence and uniqueness of global strong solutions that are uniformly bounded in time. This result is obtained without any smallness assumption on the physical parameter $xi$ that measures the ratio between tumbling and aligning effects of a shear flow exerting over the liquid crystal directors. Moreover, we show the uniqueness of asymptotic limit for each global strong solution as time goes to infinity and provide an uniform estimate on the convergence rate.
In this paper, the existence and uniqueness of strong axisymmetric solutions with large flux for the steady Navier-Stokes system in a pipe are established even when the external force is also suitably large in $L^2$. Furthermore, the exponential conv
In this paper, we study the active hydrodynamics, described in the Q-tensor liquid crystal framework. We prove the existence of global weak solutions in dimension two and three, with suitable initial datas. By using Littlewood-Paley decomposition, we
In this paper, we are concerned with the local-in-time well-posedness of a fluid-kinetic model in which the BGK model with density dependent collision frequency is coupled with the inhomogeneous Navier-Stokes equation through drag forces. To the best
In this paper, the global strong axisymmetric solutions for the inhomogeneous incompressible Navier-Stokes system are established in the exterior of a cylinder subject to the Dirichlet boundary conditions. Moreover, the vacuum is allowed in these sol
In this paper, we study the problem of global existence of weak solutions for the quasi-stationary compressible Stokes equations with an anisotropic viscous tensor. The key element of our proof is the control of a particular defect measure associated