ﻻ يوجد ملخص باللغة العربية
We study the dynamics of a droplet moving on an inclined rough surface in the absence of inertial and viscous stress effects. In this case, the dynamics of the droplet is a purely geometric motion in terms of the wetting domain and the capillary surface. Using a single graph representation, we interpret this geometric motion as a gradient flow on a Hilbert manifold. We propose unconditionally stable first/second order numerical schemes to simulate this geometric motion of the droplet, which is described using motion by mean curvature coupled with moving contact lines. The schemes are based on (i) explicit moving boundaries, which decouple the dynamic updates of the contact lines and the capillary surface, (ii) a semi-Lagrangian method on moving grids and (iii) a predictor-corrector method with a nonlinear elliptic solver upto second order accuracy. For the case of quasi-static dynamics with continuous spatial variable in the numerical schemes, we prove the stability and convergence of the first/second order numerical schemes. To demonstrate the accuracy and long-time validation of the proposed schemes, several challenging computational examples - including breathing droplets, droplets on inhomogeneous rough surfaces and quasi-static Kelvin pendant droplets - are constructed and compared with exact solutions to quasi-static dynamics obtained by desingularized differential-algebraic system of equations (DAEs).
A novel semi-Lagrangian method is introduced to solve numerically the Euler equation for ideal incompressible flow in arbitrary space dimension. It exploits the time-analyticity of fluid particle trajectories and requires, in principle, only limited
We investigate several important issues regarding the Random Batch Method (RBM) for second order interacting particle systems. We first show the uniform-in-time strong convergence for second order systems under suitable contraction conditions. Second
We present a paradigm for developing arbitrarily high order, linear, unconditionally energy stable numerical algorithms for gradient flow models. We apply the energy quadratization (EQ) technique to reformulate the general gradient flow model into an
We derive a numerical method for Darcy flow, hence also for Poissons equation in mixed (first order) form, based on discrete exterior calculus (DEC). Exterior calculus is a generalization of vector calculus to smooth manifolds and DEC is one of its d
For a class of fourth order gradient flow problems, integration of the scalar auxiliary variable (SAV) time discretization with the penalty-free discontinuous Galerkin (DG) spatial discretization leads to SAV-DG schemes. These schemes are linear and