ﻻ يوجد ملخص باللغة العربية
The dynamics of certain combinatorial actions and their liftings to actions at the piecewise-linear and birational level have been studied lately with an eye towards questions of periodicity, orbit structure, and invariants. One key property enjoyed by the rowmotion operator on certain finite partially-ordered sets is homomesy, where the average value of a statistic is the same for all orbits. To prove refin
Birational rowmotion is an action on the space of assignments of rational functions to the elements of a finite partially-ordered set (poset). It is lifted from the well-studied rowmotion map on order ideals (equivariantly on antichains) of a poset $
In this paper, we enumerate the pairs of permutations that are long cycles and whose product has a given cycle-type. Our main result is a simple relation concerning the desired numbers for a few related cycle-types. The relation refines a formula of
Many invertible actions $tau$ on a set ${mathcal{S}}$ of combinatorial objects, along with a natural statistic $f$ on ${mathcal{S}}$, exhibit the following property which we dub textbf{homomesy}: the average of $f$ over each $tau$-orbit in ${mathcal{
In this paper, we first obtain some analogues of a formula of Zagier (1995) and Stanley (2011). For instance, we prove that the number of pairs of $n$-cycles whose product has $k$ cycles and has $m$ given elements contained in distinct cycles (or sep
We study a birational map associated to any finite poset P. This map is a far-reaching generalization (found by Einstein and Propp) of classical rowmotion, which is a certain permutation of the set of order ideals of P. Classical rowmotion has been s