ترغب بنشر مسار تعليمي؟ اضغط هنا

Combinatorially refine a Zagier-Stanley result on products of permutations

86   0   0.0 ( 0 )
 نشر من قبل Ricky Xiaofeng Chen
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Ricky X. F. Chen




اسأل ChatGPT حول البحث

In this paper, we enumerate the pairs of permutations that are long cycles and whose product has a given cycle-type. Our main result is a simple relation concerning the desired numbers for a few related cycle-types. The relation refines a formula of the number of pairs of long cycles whose product has $k$ cycles independently obtained by Zagier and Stanley relying on group characters, and was previously obtained by F{e}ray and Vassilieva by counting some colored permutations first and then relying on some algebraic computations in the ring of symmetric functions. Our approach here is simpler and combinatorial.


قيم البحث

اقرأ أيضاً

In this paper, we introduce plane permutations, i.e. pairs $mathfrak{p}=(s,pi)$ where $s$ is an $n$-cycle and $pi$ is an arbitrary permutation, represented as a two-row array. Accordingly a plane permutation gives rise to three distinct permutations: the permutation induced by the upper horizontal ($s$), the vertical $pi$) and the diagonal ($D_{mathfrak{p}}$) of the array. The latter can also be viewed as the three permutations of a hypermap. In particular, a map corresponds to a plane permutation, in which the diagonal is a fixed point-free involution. We study the transposition action on plane permutations obtained by permuting their diagonal-blocks. We establish basic properties of plane permutations and study transpositions and exceedances and derive various enumerative results. In particular, we prove a recurrence for the number of plane permutations having a fixed diagonal and $k$ cycles in the vertical, generalizing Chapuys recursion for maps filtered by the genus. As applications of this framework, we present a combinatorial proof of a result of Zagier and Stanley, on the number of $n$-cycles $omega$, for which the product $omega(1~2~cdots ~n)$ has exactly $k$ cycles. Furthermore, we integrate studies on the transposition and block-interchange distance of permutations as well as the reversal distance of signed permutations. Plane permutations allow us to generalize and recover various lower bounds for transposition and block-interchange distances and to connect reversals with block-interchanges.
111 - Ricky X. F. Chen 2019
In this paper, we first obtain some analogues of a formula of Zagier (1995) and Stanley (2011). For instance, we prove that the number of pairs of $n$-cycles whose product has $k$ cycles and has $m$ given elements contained in distinct cycles (or sep arated) is given by $$ frac{2 (n-1)! C_m(n+1,k)}{(n+m)(n+1-m)} $$ when $n-k$ is even, where $C_m(n,k)$ is the number of permutations of $n$ elements having $k$ cycles and separating $m$ given elements. As consequences, we obtain the formulas for certain separation probabilities due to Du and Stanley, answering a call of Stanley for simple combinatorial proofs. Furthermore, we obtain the expectation and variance of the number of fixed points in the product of two random $n$-cycles.
179 - Michael Joseph , Tom Roby 2020
The dynamics of certain combinatorial actions and their liftings to actions at the piecewise-linear and birational level have been studied lately with an eye towards questions of periodicity, orbit structure, and invariants. One key property enjoyed by the rowmotion operator on certain finite partially-ordered sets is homomesy, where the average value of a statistic is the same for all orbits. To prove refin
We study the combinatorics of hyperplane arrangements over arbitrary fields. Specifically, we determine in which situation an arrangement and its reduction modulo a prime number have isomorphic lattices via the use of minimal strong $sigma$-Grobner b ases. Moreover, we prove that the Teraos conjecture over finite fields implies the conjecture over the rationals.
In this paper we present a simple framework to study various distance problems of permutations, including the transposition and block-interchange distance of permutations as well as the reversal distance of signed permutations. These problems are ver y important in the study of the evolution of genomes. We give a general formulation for lower bounds of the transposition and block-interchange distance from which the existing lower bounds obtained by Bafna and Pevzner, and Christie can be easily derived. As to the reversal distance of signed permutations, we translate it into a block-interchange distance problem of permutations so that we obtain a new lower bound. Furthermore, studying distance problems via our framework motivates several interesting combinatorial problems related to product of permutations, some of which are studied in this paper as well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا