ترغب بنشر مسار تعليمي؟ اضغط هنا

One-body entanglement as a quantum resource in fermionic systems

87   0   0.0 ( 0 )
 نشر من قبل Nicol\\'as Gigena
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that one-body entanglement, which is a measure of the deviation of a pure fermionic state from a Slater determinant (SD) and is determined by the mixedness of the single-particle density matrix (SPDM), can be considered as a quantum resource. The associated theory has SDs and their convex hull as free states, and number conserving fermion linear optics operations (FLO), which include one-body unitary transformations and measurements of the occupancy of single-particle modes, as the basic free operations. We first provide a bipartitelike formulation of one-body entanglement, based on a Schmidt-like decomposition of a pure $N$-fermion state, from which the SPDM [together with the $(N-1)$-body density matrix] can be derived. It is then proved that under FLO operations, the initial and postmeasurement SPDMs always satisfy a majorization relation, which ensures that these operations cannot increase, on average, the one-body entanglement. It is finally shown that this resource is consistent with a model of fermionic quantum computation which requires correlations beyond antisymmetrization. More general free measurements and the relation with mode entanglement are also discussed.



قيم البحث

اقرأ أيضاً

We examine distinct measures of fermionic entanglement in the exact ground state of a finite superconducting system. It is first shown that global measures such as the one-body entanglement entropy, which represents the minimum relative entropy betwe en the exact ground state and the set of fermionic gaussian states, exhibit a close correlation with the BCS gap, saturating in the strong superconducting regime. The same behavior is displayed by the bipartite entanglement between the set of all single particle states $k$ of positive quasimomenta and their time reversed partners $bar{k}$. In contrast, the entanglement associated with the reduced density matrix of four single particle modes $k,bar{k}$, $k,bar{k}$, which can be measured through a properly defined fermionic concurrence, exhibits a different behavior, showing a peak in the vicinity of the superconducting transition for states $k,k$ close to the fermi level and becoming small in the strong coupling regime. In the latter such reduced state exhibits, instead, a finite mutual information and quantum discord. And while the first measures can be correctly estimated with the BCS approximation, the previous four-level concurrence lies strictly beyond the latter, requiring at least a particle number projected BCS treatment for its description. Formal properties of all previous entanglement measures are as well discussed.
The statistical mechanics characterization of a finite subsystem embedded in an infinite system is a fundamental question of quantum physics. Nevertheless, a full closed form { for all required entropic measures} does not exist in the general case ev en for free systems when the finite system in question is composed of several disjoint intervals. Here we develop a mathematical framework based on the Riemann-Hilbert approach to treat this problem in the one-dimensional case where the finite system is composed of two disjoint intervals and in the thermodynamic limit (both intervals and the space between them contains an infinite number of lattice sites and the result is given as a thermodynamic expansion). To demonstrate the usefulness of our method, we compute the change in the entanglement and negativity namely the spectrum of eigenvalues of the reduced density matrix with our without time reversal of one of the intervals. We do this in the case that the distance between the intervals is much larger than their size. The method we use can be easily applied to compute any power in an expansion in the ratio of the distance between the intervals to their size. {We expect these results to provide the necessary mathematical apparatus to address relevant questions in concrete physical scenarios, namely the structure and extent of quantum correlations in fermionic systems subject to local environment.
We derive an exact lower bound to a universal measure of frustration in degenerate ground states of quantum many-body systems. The bound results in the sum of two contributions: entanglement and classical correlations arising from local measurements. We show that average frustration properties are completely determined by the behavior of the maximally mixed ground state. We identify sufficient conditions for a quantum spin system to saturate the bound, and for models with twofold degeneracy we prove that average and local frustration coincide.
Just recently, complementarity relations (CRs) have been derived from the basic rules of Quantum Mechanics. The complete CRs are equalities involving quantum coherence, $C$, quantum entanglement, and predictability, $P$. While the first two are alrea dy quantified in the resource theory framework, such a characterization lacks for the last. In this article, we start showing that, for a system prepared in a state $rho$, $P$ of $rho$, with reference to an observable $X$, is equal to $C$, with reference to observables mutually unbiased (MU) to $X$, of the state $Phi_{X}(rho)$, which is obtained from a non-revealing von Neumann measurement (NRvNM) of $X$. We also show that $P^X(rho)>C^{Y}(Phi_{X}(rho))$ for observables not MU. Afterwards, we provide quantum circuits for implementing NRvNMs and use these circuits to experimentally test these (in)equalities using the IBMs quantum computers. Furthermore, we give a resource theory for predictability, identifying its free quantum states and free quantum operations and discussing some predictability monotones. Besides, after applying one of these predictability monotones to study bipartite systems, we discuss the relation among the resource theories of quantum coherence, predictability, and purity.
Quantum tunneling events occurring through biochemical bonds are capable to generate quantum correlations between bonded systems, which in turn makes the conventional second law of thermodynamics approach insufficient to investigate these systems. Th is means that the utilization of these correlations in their biological functions could give an evolutionary advantage to biomolecules to an extent beyond the predictions of molecular biology that are generally based on the second law in its standard form. To explore this possibility, we first compare the tunneling assisted quantum entanglement shared in the ground states of covalent and hydrogen bonds. Only the latter appears to be useful from a quantum information point of view. Also, significant amounts of quantum entanglement can be found in the thermal state of hydrogen bond. Then, we focus on an illustrative example of ligand binding in which a receptor protein or an enzyme is restricted to recognize its ligands using the same set of proton-acceptors and donors residing on its binding site. In particular, we show that such a biomolecule can discriminate between $3^n - 1$ agonist ligands if it uses the entanglement shared in $n$ intermolecular hydrogen bonds as a resource in molecular recognition. Finally, we consider the molecular recognition events encountered in both the contemporary genetic machinery and its hypothetical primordial ancestor in pre-DNA world, and discuss whether there may have been a place for the utilization of quantum entanglement in the evolutionary history of this system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا