ترغب بنشر مسار تعليمي؟ اضغط هنا

SPD - the Spin Physics Project with Polarized Proton and Deuteron Beams at the NICA Collider

148   0   0.0 ( 0 )
 نشر من قبل Alexey Guskov
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف A. Guskov




اسأل ChatGPT حول البحث

The SPD experiment at the future NICA collider at JINR (Dubna, Russia) aims to investigate the nucleon spin structure and polarization phenomena in collisions of longitudinally and transversely polarized protons and deuterons at $sqrt{s}$ up to 27 GeV and luminosity up to 10$^{32}$ cm$^{-2}$ s$^{-1}$. Measurement of asymmetries in the Drell-Yan pairs, charmonium and prompt photon production can provide an access to the full set of leading twist TMD PDFs in nucleons. The experimental setup is planned as a universal 4$pi$ detector for a wide range of physics tasks.

قيم البحث

اقرأ أيضاً

We propose to perform measurements of asymmetries of the Drell-Yan (DY) pairs production in collisions of non-polarized, longitudinally and transversally polarized protons and deuterons which provide an access to all leading twist collinear and TMD P DFs of quarks and anti-quarks in nucleons. The measurements of asymmetries in production of J/Psi and direct photons will be performed as well simultaneously with DY using dedicated triggers. The set of these measurements will supply complete information for tests of the quark-parton model of nucleons at the QCD twist-two level with minimal systematic errors.
The Spin Physics Detector (SPD) is a future multipurpose experiment foreseen to run at the NICA collider, which is currently under construction at the Joint Institute for Nuclear Research (JINR, Dubna, Russia). The physics program of the experiment i s based on collisions of longitudinally and transversely polarized protons and deuterons at $sqrt{s}$ up to 27 GeV and luminosity up to 10$^{32}$ cm$^{-2}$ s$^{-1}$. The SPD will operate as a universal facility for comprehensive study of unpolarized and polarized gluon content of the nucleon, using different complementary probes such as: charmonia, open charm, and prompt photon production processes. The aim of this work is to make a thorough review of the physics objectives that can potentially be addressed at the SPD, underlining related theoretical aspects and discussing relevant experimental results when available. Among different pertinent phenomena particular attention is drawn to the study of the gluon helicity, gluon Sivers and Boer-Mulders functions in the nucleon, as well as the gluon transversity distribution in the deuteron, via the measurement of specific single and double spin asymmetries.
This paper contains suggestions for experiments with usage of the Spin Physics Detector (SPD) at the first stage of the SPD NICA Programme developing at JINR. Double polarized pp-, dd- and pd- collisions at c.m.s. NN energies of 3.4-10 GeV, which wil l be accessible at the initial stage of experiments, allow one to study spin dependence of the NN interaction, search for multiquark states at double strangeness, charm and beauty thresholds, study the short-range structure of the deuteron. Double polarized pd scattering offer a possibility to test the Standard Model through the search for T-invariance violation.
62 - Yu.N.Uzikov 2020
A systematic analysis of nucleon-nucleon scattering amplitudes is available up to a laboratory energy of $3$~GeV in case of the $pp$ system and up to $1.2$ GeV for $pn$. At higher energies there is only incomplete experimental information on $pp$ ela stic scattering, whereas data for the $pn$ system are very scarce. We apply the spin-dependent Glauber theory to calculate spin observables of $pd$ elastic scattering at $3$-$50$ GeV/c using $pp$ amplitudes available in the literature and parametrized within the Regge formalism. The calculated vector $A_y^p$, $A_y^d$ and tensor $A_{xx}$, $A_{yy}$ analyzing powers and the spin-correlation coefficients $C_{y,y}$, $C_{x,x}$, $C_{yy,y}$, $C_{xx,y}$ can be measured at SPD NICA and, thus, will provide a test of the used $pN$ amplitudes.
124 - A. Guskov , R. El-Kholy 2018
Dark matter is an important component of the Standard model of cosmology but its nature is still unknown. One of the most common explanations is that dark matter consists of Weakly Interacting Massive Particles (WIMPs), supposed to be cold thermal re lics of the Big Bang and to build up the galactic dark halos. Indirect search of dark matter could be performed via the study of an anomalous antiproton component in cosmic rays originating from possible annihilation of dark matter pairs in the galactic halo, on top of the standard astrophysical production. The measurements performed by the AMS-02 and PAMELA spectrometers have shown that limited knowledge of antiproton-production cross sections in $pp$, $pD$, $pHe$ and $HeHe$ collisions is one of the main uncertainties of background subtraction. The planned SPD experiment at the NICA collider could provide a precision measurement of antiproton yield in wide kinematic range in $pp$ and $pD$ collisions at the energy scale from the threshold to $sqrt{s}=26$ GeV/$c$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا