ترغب بنشر مسار تعليمي؟ اضغط هنا

An ecological framework for the analysis of prebiotic chemical reaction networks and their dynamical behavior

74   0   0.0 ( 0 )
 نشر من قبل Zhen Peng
 تاريخ النشر 2020
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is becoming widely accepted that very early in the origin of life, even before the emergence of genetic encoding, reaction networks of diverse small chemicals might have manifested key properties of life, namely self-propagation and adaptive evolution. To explore this possibility, we formalize the dynamics of chemical reaction networks within the framework of chemical ecosystem ecology. To capture the idea that life-like chemical systems are maintained out of equilibrium by fluxes of energy-rich food chemicals, we model chemical ecosystems in well-mixed containers that are subject to constant dilution by a solution with a fixed concentration of food chemicals. Modelling all chemical reactions as fully reversible, we show that seeding an autocatalytic cycle (AC) with tiny amounts of one or more of its member chemicals results in logistic growth of all member chemicals in the cycle. This finding justifies drawing an instructive analogy between an AC and the population of a biological species. We extend this finding to show that pairs of ACs can show competitive, predator-prey, or mutualistic associations just like biological species. Furthermore, when there is stochasticity in the environment, particularly in the seeding of ACs, chemical ecosystems can show complex dynamics that can resemble evolution. The evolutionary character is especially clear when the network architecture results in ecological precedence (survival of the first), which makes the path of succession historically contingent on the order in which cycles are seeded. For all its simplicity, the framework developed here is helpful for visualizing how autocatalysis in prebiotic chemical reaction networks can yield life-like properties. Furthermore, chemical ecosystem ecology could provide a useful foundation for exploring the emergence of adaptive dynamics and the origins of polymer-based genetic systems.



قيم البحث

اقرأ أيضاً

233 - Matthew D. Johnston 2013
Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polyno mial ordinary differential equations. The steady states of these mass action systems have been analysed via a variety of techniques, including elementary flux mode analysis, algebraic techniques (e.g. Groebner bases), and deficiency theory. In this paper, we present a novel method for characterizing the steady states of mass action systems. Our method explicitly links a networks capacity to permit a particular class of steady states, called toric steady states, to topological properties of a related network called a translated chemical reaction network. These networks share their reaction stoichiometries with their source network but are permitted to have different complex stoichiometries and different network topologies. We apply the results to examples drawn from the biochemical literature.
Reaction networks are commonly used within the mathematical biology and mathematical chemistry communities to model the dynamics of interacting species. These models differ from the typical graphs found in random graph theory since their vertices are constructed from elementary building blocks, i.e., the species. In this paper, we consider these networks in an ErdH os-Renyi framework and, under suitable assumptions, derive a threshold function for the network to have a deficiency of zero, which is a property of great interest in the reaction network community. Specifically, if the number of species is denoted by $n$ and if the edge probability is denote by $p_n$, then we prove that the probability of a random binary network being deficiency zero converges to 1 if $frac{p_n}{r(n)}to 0$, as $n to infty$, and converges to 0 if $frac{p_n}{r(n)}to infty$, as $n to infty$, where $r(n)=frac{1}{n^3}$.
We are concerned with polynomial ordinary differential systems that arise from modelling chemical reaction networks. For such systems, which may be of high dimension and may depend on many parameters, it is frequently of interest to obtain a reductio n of dimension in certain parameter ranges. Singular perturbation theory, as initiated by Tikhonov and Fenichel, provides a path toward such reductions. In the present paper we discuss parameter values that lead to singular perturbation reductions (so-called Tikhonov-Fenichel parameter values, or TFPVs). An algorithmic approach is known, but it is feasible for small dimensions only. Here we characterize conditions for classes of reaction networks for which TFPVs arise by turning off reactions (by setting rate parameters to zero), or by removing certain species (which relates to the classical quasi-steady state approach to model reduction). In particular, we obtain definitive results for the class of complex balanced reaction networks (of deficiency zero) and first order reaction networks.
Autocatalysis underlies the ability of chemical and biochemical systems to replicate. Recently, Blokhuis et al. gave a stoechiometric definition of autocatalysis for reaction networks, stating the existence of a combination of reactions such that the balance for all autocatalytic species is strictly positive, and investigated minimal autocatalytic networks, called {em autocatalytic cores}. By contrast, spontaneous autocatalysis -- namely, exponential amplification of all species internal to a reaction network, starting from a diluted regime, i.e. low concentrations -- is a dynamical property. We introduce here a topological condition (Top) for autocatalysis, namely: restricting the reaction network description to highly diluted species, we assume existence of a strongly connected component possessing at least one reaction with multiple products (including multiple copies of a single species). We find this condition to be necessary and sufficient for stoechiometric autocatalysis. When degradation reactions have small enough rates, the topological condition further ensures dynamical autocatalysis, characterized by a strictly positive Lyapunov exponent giving the instantaneous exponential growth rate of the system. The proof is generally based on the study of auxiliary Markov chains. We provide as examples general autocatalytic cores of Type I and Type III in the typology of Blokhuis et al. In a companion article, Lyapunov exponents and the behavior in the growth regime are studied quantitatively beyond the present diluted regime .
Deficiency zero is an important network structure and has been the focus of many celebrated results within reaction network theory. In our previous paper textit{Prevalence of deficiency zero reaction networks in an ErdH os-Renyi framework}, we provid ed a framework to quantify the prevalence of deficiency zero among randomly generated reaction networks. Specifically, given a randomly generated binary reaction network with $n$ species, with an edge between two arbitrary vertices occurring independently with probability $p_n$, we established the threshold function $r(n)=frac{1}{n^3}$ such that the probability of the random network being deficiency zero converges to 1 if $frac{p_n}{r(n)}to 0$ and converges to 0 if $frac{p_n}{r(n)}toinfty$, as $n to infty$. With the base ErdH os-Renyi framework as a starting point, the current paper provides a significantly more flexible framework by weighting the edge probabilities via control parameters $alpha_{i,j}$, with $i,jin {0,1,2}$ enumerating the types of possible vertices (zeroth, first, or second order). The control parameters can be chosen to generate random reaction networks with a specific underlying structure, such as closed networks with very few inflow and outflow reactions, or open networks with abundant inflow and outflow. Under this new framework, for each choice of control parameters ${alpha_{i,j}}$, we establish a threshold function $r(n,{alpha_{i,j}})$ such that the probability of the random network being deficiency zero converges to 1 if $frac{p_n}{r(n,{alpha_{i,j}})}to 0$ and converges to 0 if $frac{p_n}{r(n,{alpha_{i,j}})}to infty$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا