ﻻ يوجد ملخص باللغة العربية
Deficiency zero is an important network structure and has been the focus of many celebrated results within reaction network theory. In our previous paper textit{Prevalence of deficiency zero reaction networks in an ErdH os-Renyi framework}, we provided a framework to quantify the prevalence of deficiency zero among randomly generated reaction networks. Specifically, given a randomly generated binary reaction network with $n$ species, with an edge between two arbitrary vertices occurring independently with probability $p_n$, we established the threshold function $r(n)=frac{1}{n^3}$ such that the probability of the random network being deficiency zero converges to 1 if $frac{p_n}{r(n)}to 0$ and converges to 0 if $frac{p_n}{r(n)}toinfty$, as $n to infty$. With the base ErdH os-Renyi framework as a starting point, the current paper provides a significantly more flexible framework by weighting the edge probabilities via control parameters $alpha_{i,j}$, with $i,jin {0,1,2}$ enumerating the types of possible vertices (zeroth, first, or second order). The control parameters can be chosen to generate random reaction networks with a specific underlying structure, such as closed networks with very few inflow and outflow reactions, or open networks with abundant inflow and outflow. Under this new framework, for each choice of control parameters ${alpha_{i,j}}$, we establish a threshold function $r(n,{alpha_{i,j}})$ such that the probability of the random network being deficiency zero converges to 1 if $frac{p_n}{r(n,{alpha_{i,j}})}to 0$ and converges to 0 if $frac{p_n}{r(n,{alpha_{i,j}})}to infty$.
Reaction networks are commonly used within the mathematical biology and mathematical chemistry communities to model the dynamics of interacting species. These models differ from the typical graphs found in random graph theory since their vertices are
We consider stochastically modeled chemical reaction systems with mass-action kinetics and prove that a product-form stationary distribution exists for each closed, irreducible subset of the state space if an analogous deterministically modeled syste
Chemical reaction networks describe interactions between biochemical species. Once an underlying reaction network is given for a biochemical system, the system dynamics can be modelled with various mathematical frameworks such as continuous time Mark
In this work we introduce some preliminary analyses on the role of a semi-permeable membrane in the dynamics of a stochastic model of catalytic reaction sets (CRSs) of molecules. The results of the simulations performed on ensembles of randomly gener
It is well known that stochastically modeled reaction networks that are complex balanced admit a stationary distribution that is a product of Poisson distributions. In this paper, we consider the following related question: supposing that the initial