ﻻ يوجد ملخص باللغة العربية
We introduce and study the index morphism for G-invariant leafwise G-transversally elliptic operators on smooth closed foliated manifolds which are endowed with leafwise actions of the compact group G. We prove the usual axioms of excision, multiplicativity and induction for closed subgroups. In the case of free actions, we relate our index class with the Connes-Skandalis index class of the corresponding leafwise elliptic operator on the quotient foliation. Finally we prove the compatibility of our index morphism with the Gysin Thom isomorphism and reduce its computation to the case of tori actions. We also construct a topological candidate for an index theorem using the Kasparov Dirac element for euclidean G-representations.
We define and study the index map for families of $G$-transversally elliptic operators and introduce the multiplicity for a given irreducible representation as a virtual bundle over the base of the fibration. We then prove the usual axiomatic propert
We define the Chern character of the index class of a $G$-invariant family of $G$-transversally elliptic operators, see [6]. Next we study the Berline-Vergne formula for families in the elliptic and transversally elliptic case.
Following [44], we introduce the notion of families of projective operators on fibrations equipped with an Azumaya bundle $mathcal{A}$. We define and compute the index of such families using the cohomological index formula from [7]. More precisely, a
This paper is a continuation of arXiv:0706.3511, where we obtained a local index formula for matrix elliptic operators with shifts. Here we establish a cohomological index formula of Atiyah-Singer type for elliptic differential operators with shifts
We consider the index problem of certain boundary groupoids of the form $cG = M _0 times M _0 cup mathbb{R}^q times M _1 times M _1$. Since it has been shown that when $q $ is odd and $geq 3$, $K _0 (C^* (cG)) cong bbZ $, and moreover the $K$-theoret