ﻻ يوجد ملخص باللغة العربية
Following [44], we introduce the notion of families of projective operators on fibrations equipped with an Azumaya bundle $mathcal{A}$. We define and compute the index of such families using the cohomological index formula from [7]. More precisely, a family of projective operators $A$ can be pulled back in a family $tilde{A}$ of $SU(N)$-transversally elliptic operators on the $PU(N)$-principal bundle of trivialisations of $mathcal{A}$. Through the distributional index of $tilde{A}$, we can define an index for the family $A$ of projective operators and using the cohomological index formula from [7], we obtain an explicit cohomological index formula. Let $1 to Gamma to tilde{G} to G to 1$ be a central extension by an abelian finite group. As a preliminary result, we compute the index of families of $tilde{G}$-transversally elliptic operators on a $G$-principal bundle $P$.
We introduce a Banach Lie group $G$ of unitary operators subject to a natural trace condition. We compute the homotopy groups of $G$, describe its cohomology and construct an $S^1$-central extension. We show that the central extension determines a no
An index theory for projective families of elliptic pseudodifferential operators is developed when the twisting, i.e. Dixmier-Douady, class is decomposable. One of the features of this special case is that the corresponding Azumaya bundle can be real
We define and study the index map for families of $G$-transversally elliptic operators and introduce the multiplicity for a given irreducible representation as a virtual bundle over the base of the fibration. We then prove the usual axiomatic propert
We define the Chern character of the index class of a $G$-invariant family of $G$-transversally elliptic operators, see [6]. Next we study the Berline-Vergne formula for families in the elliptic and transversally elliptic case.
We introduce and study the index morphism for G-invariant leafwise G-transversally elliptic operators on smooth closed foliated manifolds which are endowed with leafwise actions of the compact group G. We prove the usual axioms of excision, multiplic