ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-band behaviour of the TeV blazar PG 1553+113 in optical range on diverse timescales

74   0   0.0 ( 0 )
 نشر من قبل Aditi Agarwal
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. The TeV BL Lac object PG 1553+113 is one of the primary candidates for a binary supermassive black hole system. Aims. We study the flux and spectral variability of PG 1553+113 on intra-night to long-term timescales using (i) BVRI data collected over 76 nights from January 2016 to August 2019 involving nine optical telescopes and (ii) historical VR data (including ours) obtained for the period from 2005 to 2019. Methods. We analysed the light curves using various statistical tests, fitting and cross-correlation techniques, and methods for the search for periodicity. We examined the colour-magnitude diagrams before and after the corresponding light curves were corrected for the long-term variations. Results. Our intra-night monitoring, supplemented with literature data, results in a low duty cycle of ~(10-18)%. In April 2019, we recorded a flare, which marks the brightest state of PG 1553+113 for the period from 2005 to 2019: R = 13.2 mag. This flare is found to show a clockwise spectral hysteresis loop on its VR colour-magnitude diagram and a time lag in the sense that the V-band variations lead the R-band ones. We obtain estimates of the radius, the magnetic field strength, and the electron energy that characterize the emission region related to the flare. We find a median period of (2.21 +/- 0.04) years using the historical light curves. In addition, we detect a secondary period of about 210 days using the historical light curves corrected for the long-term variations. We briefly discuss the possible origin of this period.



قيم البحث

اقرأ أيضاً

We present variability analyses of twenty pointed XMM-Newton observations of the high energy peaked TeV blazar PG 1553+113 taken during 2010 to 2018. We found intraday variability in the total X-ray energy range (0.3 -- 10 keV) in 16 out of 19 light curves or a duty cycle of ~84%. A discrete correlation function analysis of the intraday light curves in the soft and hard X-ray bands peaks on zero lag, showing that the emission in hard and soft bands are co-spatial and emitted from the same population of leptons. Red-noise dominates the power spectral density (PSD) of all the LCs although the PSDs have a range of spectral slopes from -2.36 to -0.14. On longer timescales, the optical and UV variability patterns look almost identical and well correlated, as are the soft and hard X-ray bands, but the optical/UV variations are not correlated to those in the X-ray band, indicating that the optical/UV and X-ray emissions are emitted by two different populations of leptons. We briefly discuss physical mechanisms which may be capable of explaining the observed flux and spectral variability of PG 1553+113 on these diverse timescales.
We present our optical photometric observations of three TeV blazars, PKS 1510-089, PG 1553+113 and Mrk 501 taken using two telescopes in India, one in Bulgaria, one in Greece and one in Serbia during 2012 - 2014. These observations covered a total o f 95 nights with a total of 202 B filter frames, 247 images in V band, 817 in R band while 229 images were taken in the I filter. This work is focused on multi-band flux and colour variability studies of these blazars on diverse timescales which are useful in understanding the emission mechanisms. We studied the variability characteristics of above three blazars and found all to be active over our entire observational campaigns. We also searched for any correlation between the brightness of the sources and their colour indices. During the times of variability, no significant evidence for the sources to display spectral changes correlated with magnitude was found on timescales of a few months. We briefly discuss the possible physical mechanisms most likely responsible for the observed flux variability.
The blazar PG 1553+113 is a well known TeV gamma-ray emitter. In this paper, we determine its spectral energy distribution using simultaneous multi-frequency data in order to study its emission processes. An extensive campaign was carried out between March and April 2008, where optical, X-ray, high-energy (HE) gamma-ray, and very-high-energy (VHE) gamma-ray data were obtained with the KVA, Abastumani, REM, RossiXTE/ASM, AGILE and MAGIC telescopes, respectively. This is the first simultaneous broad-band (i.e., HE+VHE) gamma-ray observation, though AGILE did not detect the source. We combine data to derive sources spectral energy distribution and interpret its double peaked shape within the framework of a synchrotron self compton model
We report simultaneous multi-frequency observations of the blazar PG 1553+113, that were carried out in March-April 2008. Optical, X-ray, high-energy (HE; greater than 100 MeV) gamma-ray, and very-high- energy (VHE; greater than 100 GeV) gamma-ray da ta were obtained with the KVA, REM, RossiXTE/ASM, AGILE and MAGIC telescopes. This is the first simultaneous broad-band (i.e., HE+VHE) gamma-ray observation of a blazar. The source spectral energy distribution derived combining these data shows the usual double-peak shape, and is interpreted in the framework of a synchrotron-self-Compton model.
We report the results of our optical (VRI) photometric observations of the TeV blazar 1ES 0806$+$524 on 153 nights during 2011-2019 using seven optical telescopes in Europe and Asia. We investigated the variability of the blazar on intraday as well a s on long-term timescales. We examined eighteen intraday light curves for flux and color variations using the most reliable power-enhanced F-test and the nested ANOVA test. Only on one night was a small, but significant, variation found, in both $V$ band and $R$ band light curves. The $V-R$ color index was constant on every one of those nights. Flux density changes of around 80 % were seen over the course of these eight years in multiple bands. We found a weighted mean optical spectral index of 0.639$pm$0.002 during our monitoring period by fitting a power law ($F_{ u} propto u^{-alpha}$) in 23 optical ($VRI$) spectral energy distributions of 1ES 0806$+$524. We discuss different possible mechanisms responsible for blazar variability on diverse timescales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا