ترغب بنشر مسار تعليمي؟ اضغط هنا

On the roots of the Poupard and Kreweras polynomials

69   0   0.0 ( 0 )
 نشر من قبل Frederic Chapoton
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Frederic Chapoton




اسأل ChatGPT حول البحث

The Poupard polynomials are polynomials in one variable with integer coefficients, with some close relationship to Bernoulli and tangent numbers. They also have a combinatorial interpretation. We prove that every Poupard polynomial has all its roots on the unit circle. We also obtain the same property for another sequence of polynomials introduced by Kreweras and related to Genocchi numbers. This is obtained through a general statement about some linear operators acting on palindromic polynomials.



قيم البحث

اقرأ أيضاً

234 - Takuro Abe 2021
Teraos factorization theorem shows that if an arrangement is free, then its characteristic polynomial factors into the product of linear polynomials over the integer ring. This is not a necessary condition, but there are not so many non-free arrangem ents whose characteristic polynomial factors over the integer ring. On the other hand, the localization of a free arrangement is free, and its restriction is in many cases free, thus its characteristic polynomial factors. In this paper, we consider how their integer, or real roots behave.
In this paper, we study the Ehrhart polynomial of the dual of the root polytope of type C of dimension $d$, denoted by $C_d^*$. We prove that the roots of the Ehrhart polynomial of $C_d^*$ have the same real part $-1/2$, and we also prove that the Eh rhart polynomials of $C_d^*$ for $d=1,2,ldots$ has the interlacing property.
In this note, by the umbra calculus method, the Sun and Zagiers congruences involving the Bell numbers and the derangement numbers are generalized to the polynomial cases. Some special congruences are also provided.
Assume that the vertices of a graph $G$ are always operational, but the edges of $G$ fail independently with probability $q in[0,1]$. The emph{all-terminal reliability} of $G$ is the probability that the resulting subgraph is connected. The all-termi nal reliability can be formulated into a polynomial in $q$, and it was conjectured cite{BC1} that all the roots of (nonzero) reliability polynomials fall inside the closed unit disk. It has since been shown that there exist some connected graphs which have their reliability roots outside the closed unit disk, but these examples seem to be few and far between, and the roots are only barely outside the disk. In this paper we generalize the notion of reliability to simplicial complexes and matroids and investigate when, for small simplicial complexes and matroids, the roots fall inside the closed unit disk.
164 - Minghua Lin , Gord Sinnamon 2016
It is shown that if two hyperbolic polynomials have a particular factorization into quadratics, then their roots satisfy a power majorization relation whenever key coefficients in their factorizations satisfy a corresponding majorization relation. In particular, a numerical observation by Klemev{s} is confirmed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا