ترغب بنشر مسار تعليمي؟ اضغط هنا

Roots of the characteristic polynomials of hyperplane arrangements and their restrictions and localizations

235   0   0.0 ( 0 )
 نشر من قبل Takuro Abe
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Takuro Abe




اسأل ChatGPT حول البحث

Teraos factorization theorem shows that if an arrangement is free, then its characteristic polynomial factors into the product of linear polynomials over the integer ring. This is not a necessary condition, but there are not so many non-free arrangements whose characteristic polynomial factors over the integer ring. On the other hand, the localization of a free arrangement is free, and its restriction is in many cases free, thus its characteristic polynomial factors. In this paper, we consider how their integer, or real roots behave.



قيم البحث

اقرأ أيضاً

Let $q$ be a positive integer. In our recent paper, we proved that the cardinality of the complement of an integral arrangement, after the modulo $q$ reduction, is a quasi-polynomial of $q$, which we call the characteristic quasi-polynomial. In this paper, we study general properties of the characteristic quasi-polynomial as well as discuss two important examples: the arrangements of reflecting hyperplanes arising from irreducible root systems and the mid-hyperplane arrangements. In the root system case, we present a beautiful formula for the generating function of the characteristic quasi-polynomial which has been essentially obtained by Ch. Athanasiadis and by A. Blass and B. Sagan. On the other hand, it is hard to find the generating function of the characteristic quasi-polynomial in the mid-hyperplane arrangement case. We determine them when the dimension is less than six.
Given an integral hyperplane arrangement, Kamiya-Takemura-Terao (2008 & 2011) introduced the notion of characteristic quasi-polynomial, which enumerates the cardinality of the complement of the arrangement modulo a positive integer. The most popular candidate for period of the characteristic quasi-polynomials is the lcm period. In this paper, we initiate a study of period collapse in characteristic quasi-polynomials stemming from the concept of period collapse in the theory of Ehrhart quasi-polynomials. We say that period collapse occurs in a characteristic quasi-polynomial when the minimum period is strictly less than the lcm period. Our first main result is that in the non-central case, with regard to period collapse anything is possible: period collapse occurs in any dimension $ge 1$, occurs for any value of the lcm period $ge 2$, and the minimum period when it is not the lcm period can be any proper divisor of the lcm period. Our second main result states that in the central case, however, no period collapse is possible in any dimension, that is, the lcm period is always the minimum period.
131 - Jaeho Shin 2019
There is a trinity relationship between hyperplane arrangements, matroids and convex polytopes. We expand it as resolving the complexity issue expected by Mnevs universality theorem and conduct combinatorializing so the theory over fields becomes rea lization of our combinatorial theory. A main theorem is that for n less than or equal to 9 a specific and general enough kind of matroid tilings in the hypersimplex Delta(3,n) extend to matroid subdivisions of Delta(3,n) with the bound n=9 sharp. As a straightforward application to realizable cases, we solve an open problem in algebraic geometry proposed in 2008.
The aim of the article is to understand the combinatorics of snake graphs by means of linear algebra. In particular, we apply Kasteleyns and Temperley--Fishers ideas about spectral properties of weighted adjacency matrices of planar bipartite graphs to snake graphs. First we focus on snake graphs whose set of turning vertices is monochromatic. We provide recursive sequences to compute the characteristic polynomials; they are indexed by the upper or the lower boundary of the graph and are determined by a neighbour count. As an application, we compute the characteristic polynomials for L-shaped snake graphs and staircases in terms of Fibonacci product polynomials. Next, we introduce a method to compute the characteristic polynomials as convergents of continued fractions. Finally, we show how to transform a snake graph with turning vertices of two colours into a graph with the same number of perfect matchings to which we can apply the results above.
In this article, we study the weak and strong Lefschetz properties, and the related notion of almost revlex ideal, in the non-Artinian case, proving that several results known in the Artinian case hold also in this more general setting. We then apply the obtained results to the study of the Jacobian algebra of hyperplane arrangements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا