ﻻ يوجد ملخص باللغة العربية
We approach the calculation of the nuclear matrix element of the neutrinoless double-beta decay process, considering the light-neutrino-exchange channel, by way of the realistic shell model. To this end, we start from a realistic nucleon-nucleon potential and then derive the effective shell-model Hamiltonian and neutrinoless double-beta decay operator within the many-body perturbation theory. We focus on investigating the perturbative properties of the effective shell-model operator of such a decay process, aiming to establish the degree of reliability of our predictions. The contributions of the so-called short-range correlations and of the correction of Pauli-principle violations to the effective shell-model operator, the latter introduced in many-valence nucleon systems, are also taken into account. The subjects of our study are a few candidates to the neutrinoless double-beta decay detection, in a mass interval ranging from A=48 up to A=136, whose spin- and spin-isospin-dependent decay properties we have studied in previous works. Our results will be finally compared with shell-model calculations for the same set of nuclei.
The nuclear matrix elements of neutrinoless double-$beta$ decay for nuclei $^{76}$Ge, $^{82}$Se, $^{100}$Mo, $^{130}$Te, and $^{150}$Nd are studied within the triaxial projected shell model, which incorporates simultaneously the triaxial deformation
Neutrinoless double beta decay searches are currently among the major foci of experimental physics. The observation of such a decay will have important implications in our understanding of the intrinsic nature of neutrinos and shed light on the limit
We present the first ab initio calculations of neutrinoless double beta decay matrix elements in $A=6$-$12$ nuclei using Variational Monte Carlo wave functions obtained from the Argonne $v_{18}$ two-nucleon potential and Illinois-7 three-nucleon inte
A new generation of neutrinoless double beta decay experiments with improved sensitivity is currently under design and construction. They will probe inverted hierarchy region of the neutrino mass pattern. There is also a revived interest to the reson
Accurate nuclear matrix elements (NMEs) for neutrinoless double beta decays of candidate nuclei are important for the design and interpretation of future experiments. Significant progress has been made in the modeling of these NMEs from first princip