ﻻ يوجد ملخص باللغة العربية
We present the first ab initio calculations of neutrinoless double beta decay matrix elements in $A=6$-$12$ nuclei using Variational Monte Carlo wave functions obtained from the Argonne $v_{18}$ two-nucleon potential and Illinois-7 three-nucleon interaction. We study both light Majorana neutrino exchange and potentials arising from a large class of multi-TeV mechanisms of lepton number violation. Our results provide benchmarks to be used in testing many-body methods that can be extended to the heavy nuclei of experimental interest. In light nuclei we have also studied the impact of two-body short range correlations and the use of different forms for the transition operators, such as those corresponding to different orders in chiral effective theory.
Accurate nuclear matrix elements (NMEs) for neutrinoless double beta decays of candidate nuclei are important for the design and interpretation of future experiments. Significant progress has been made in the modeling of these NMEs from first princip
The nuclear matrix elements that govern the rate of neutrinoless double beta decay must be accurately calculated if experiments are to reach their full potential. Theorists have been working on the problem for a long time but have recently stepped up
A new generation of neutrinoless double beta decay experiments with improved sensitivity is currently under design and construction. They will probe inverted hierarchy region of the neutrino mass pattern. There is also a revived interest to the reson
We report ab initio benchmark calculations of nuclear matrix elements (NMEs) for neutrinoless double-beta ($0 ubetabeta$) decays in light nuclei with mass number ranging from $A=6$ to $A=22$. We use the transition operator derived from light-Majorana
Observation of neutrinoless double beta decay, a lepton number violating process that has been proposed to clarify the nature of neutrino masses, has spawned an enormous world-wide experimental effort. Relating nuclear decay rates to high-energy, bey