ﻻ يوجد ملخص باللغة العربية
The acoustic radiation force produced by ultrasonic waves is the workhorse of particle manipulation in acoustofluidics. Nonspherical particles are also subjected to a mean torque known as the acoustic radiation torque. Together they constitute the mean-acoustic fields exerted on the particle. Analytical methods alone cannot calculate these fields on arbitrarily shaped particles in actual fluids and no longer fit for purpose. Here, a semi-analytical approach is introduced for handling subwavelength axisymmetric particles immersed in an isotropic Newtonian fluid. The obtained mean-acoustic fields depend on the scattering coefficients that reflect the monopole and dipole modes. These coefficients are determined by numerically solving the scattering problem. Our method is benchmarked by comparison with the exact result for a subwavelength rigid sphere in water. Besides, a more realistic case of a red blood cell immersed in blood plasma under a standing ultrasonic wave is investigated with our methodology.
The nonlinear interaction of ultrasonic waves with a nonspherical particle may give rise to the acoustic radiation torque on the particle. This phenomenon is investigated here considering a rigid prolate spheroidal particle of subwavelength dimension
This paper presents a microfluidic device that implements standing surface acoustic waves in order to handle single cells, droplets, and generally particles. The particles are moved in a very controlled manner by the two-dimensional drifting of a sta
We demonstrate that the acoustic spin of a first-order Bessel beam can be transferred to a subwavelength (prolate) spheroidal particle at the beam axis in a viscous fluid. The induced radiation torque is proportional to the acoustic spin, which scale
Considerable effort has been expended over the last 2 centuries into explaining the behavior of fluid flow after the onset of turbulence. While perturbations in the velocity field have been shown to explain turbulent transitions, a physical explanati
We provide a detailed analysis on the acoustic radiation force and torque exerted on a homogeneous viscoelastic particle in the long-wave limit (the particle radius is much smaller than the incident wavelength) by an arbitrary wave. We assume that th