ﻻ يوجد ملخص باللغة العربية
A foremost task in frequency diverse array multiple-input multiple-output (FDA-MIMO) radar is to efficiently obtain the target signal in the presence of interferences. In this paper, we employ a novel low-rank + low-rank + sparse decomposition model to extract the low-rank desired signal and suppress the jamming signals from both barrage and burst jammers. In the literature, the barrage jamming signals, which are intentionally interfered by enemy jammer radar, are usually assumed Gaussian distributed. However, such assumption is oversimplified to hold in practice as the interferences often exhibit non-Gaussian properties. Those non-Gaussian jamming signals, known as impulsive noise or burst jamming, are involuntarily deviated from friendly radar or other working radio equipment including amplifier saturation and sensor failures, thunderstorms and man-made noise. The estimation performance of the existing estimators, relied crucially on the Gaussian noise assumption, may degrade substantially since the probability density function (PDF) of burst jamming has heavier tails that exceed a few standard deviations than the Gaussian distribution. To capture a more general signal model with burst jamming in practice, both barrage jamming and burst jamming are included and a two-step Go Decomposition (GoDec) method via alternating minimization is devised for such mixed jamming signal model, where the $a$ $priori$ rank information is exploited to suppress two kinds of jammers and estimate the desired target. Simulation results verify the robust performance of the devised scheme.
When the direct view between the target and the observer is not available, due to obstacles with non-zero sizes, the observation is received after reflection from a reflector, this is the indirect view or Non-Line-Of Sight condition. Localization of
We consider the relaying application of unmanned aerial vehicles (UAVs), in which UAVs are placed between two transceivers (TRs) to increase the throughput of the system. Instead of studying the placement of UAVs as pursued in existing literature, we
Scalable and decentralized algorithms for Cooperative Self-localization (CS) of agents, and Multi-Target Tracking (MTT) are important in many applications. In this work, we address the problem of Simultaneous Cooperative Self-localization and Multi-T
The world is moving towards faster data transformation with more efficient localization of a user being the preliminary requirement. This work investigates the use of a deep learning technique for wireless localization, considering both millimeter-wa
Due to the lack of a large-scale reflection removal dataset with diverse real-world scenes, many existing reflection removal methods are trained on synthetic data plus a small amount of real-world data, which makes it difficult to evaluate the streng