ﻻ يوجد ملخص باللغة العربية
When the direct view between the target and the observer is not available, due to obstacles with non-zero sizes, the observation is received after reflection from a reflector, this is the indirect view or Non-Line-Of Sight condition. Localization of a target in NLOS condition still one of the open problems yet. In this paper, we address this problem by localizing the reflector and the target simultaneously using a single stationary receiver, and a determined number of beacons, in which their placements are also analyzed in an unknown map. The work is done in mirror space, when the receiver is a camera, and the reflector is a planar mirror. Furthermore, the distance from the observer to the target is estimated by size constancy concept, and the angle of coming signal is the same as the orientation of the camera, with respect to a global frame. The results show the validation of the proposed work and the simulation results are matched with the theoretical results.
We propose a novel distributed expectation maximization (EM) method for non-cooperative RF device localization using a wireless sensor network. We consider the scenario where few or no sensors receive line-of-sight signals from the target. In the cas
Indoor wireless simultaneous localization and mapping (SLAM) is considered as a promising technique to provide positioning services in future 6G systems. However, the accuracy of traditional wireless SLAM system heavily relies on the quality of propa
This paper revisits the problem of locating a signal-emitting source from time-difference-of-arrival (TDOA) measurements under non-line-of-sight (NLOS) propagation. Many currently fashionable methods for NLOS mitigation in TDOA-based localization ten
A foremost task in frequency diverse array multiple-input multiple-output (FDA-MIMO) radar is to efficiently obtain the target signal in the presence of interferences. In this paper, we employ a novel low-rank + low-rank + sparse decomposition model
Future cellular networks that utilize millimeter wave signals provide new opportunities in positioning and situational awareness. Large bandwidths combined with large antenna arrays provide unparalleled delay and angle resolution, allowing high accur