ﻻ يوجد ملخص باللغة العربية
This work studies the joint problem of power and trajectory optimization in an unmanned aerial vehicle (UAV)-enabled mobile relaying system. In the considered system, in order to provide convenient and sustainable energy supply to the UAV relay, we consider the deployment of a power beacon (PB) which can wirelessly charge the UAV and it is realized by a properly designed laser charging system. To this end, we propose an efficiency (the weighted sum of the energy efficiency during information transmission and wireless power transmission efficiency) maximization problem by optimizing the source/UAV/PB transmit powers along with the UAVs trajectory. This optimization problem is also subject to practical mobility constraints, as well as the information-causality constraint and energy-causality constraint at the UAV. Different from the commonly used alternating optimization (AO) algorithm, two joint design algorithms, namely: the concave-convex procedure (CCCP) and penalty dual decomposition (PDD)-based algorithms, are presented to address the resulting non-convex problem, which features complex objective function with multiple-ratio terms and coupling constraints. These two very different algorithms are both able to achieve a stationary solution of the original efficiency maximization problem. Simulation results validate the effectiveness of the proposed algorithms.
This paper focuses on the design of an optimal resource allocation scheme to maximize the energy efficiency (EE) in a simultaneous wireless information and power transfer (SWIPT) enabled two-way decode-and-forward (DF) relay network under a non-linea
This paper considers an energy harvesting (EH) based multiuser mobile edge computing (MEC) system, where each user utilizes the harvested energy from renewable energy sources to execute its computation tasks via computation offloading and local compu
This paper considers an unmanned aerial vehicle enabled-up link non-orthogonal multiple-access system, where multiple mobile users on the ground send independent messages to a unmanned aerial vehicle in the sky via non-orthogonal multiple-access tran
In this letter, we study an unmanned aerial vehicle (UAV)-mounted mobile edge computing network, where the UAV executes computational tasks offloaded from mobile terminal users (TUs) and the motion of each TU follows a Gauss-Markov random model. To e
Mobile edge computing (MEC) provides computational services at the edge of networks by offloading tasks from user equipments (UEs). This letter employs an unmanned aerial vehicle (UAV) as the edge computing server to execute offloaded tasks from the