ترغب بنشر مسار تعليمي؟ اضغط هنا

Computation Rate Maximization for Multiuser Mobile Edge Computing Systems With Dynamic Energy Arrivals

352   0   0.0 ( 0 )
 نشر من قبل Feng Wang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper considers an energy harvesting (EH) based multiuser mobile edge computing (MEC) system, where each user utilizes the harvested energy from renewable energy sources to execute its computation tasks via computation offloading and local computing. Towards maximizing the systems weighted computation rate (i.e., the number of weighted users computing bits within a finite time horizon) subject to the users energy causality constraints due to dynamic energy arrivals, the decision for joint computation offloading and local computing over time is optimized {em over time}. Assuming that the profile of channel state information and dynamic task arrivals at the users is known in advance, the weighted computation rate maximization problem becomes a convex optimization problem. Building on the Lagrange duality method, the well-structured optimal solution is analytically obtained. Both the users local computing and offloading rates are shown to have a monotonically increasing structure. Numerical results show that the proposed design scheme can achieve a significant performance gain over the alternative benchmark schemes.


قيم البحث

اقرأ أيضاً

This paper investigates robust and secure multiuser multiple-input single-output (MISO) downlink communications assisted by a self-sustainable intelligent reflection surface (IRS), which can simultaneously reflect and harvest energy from the received signals. We study the joint design of beamformers at an access point (AP) and the phase shifts as well as the energy harvesting schedule at the IRS for maximizing the system sum-rate. The design is formulated as a non-convex optimization problem taking into account the wireless energy harvesting capability of IRS elements, secure communications, and the robustness against the impact of channel state information (CSI) imperfection. Subsequently, we propose a computationally-efficient iterative algorithm to obtain a suboptimal solution to the design problem. In each iteration, S-procedure and the successive convex approximation are adopted to handle the intermediate optimization problem. Our simulation results unveil that: 1) there is a non-trivial trade-off between the system sum-rate and the self-sustainability of the IRS; 2) the performance gain achieved by the proposed scheme is saturated with a large number of energy harvesting IRS elements; 3) an IRS equipped with small bit-resolution discrete phase shifters is sufficient to achieve a considerable system sum-rate of the ideal case with continuous phase shifts.
Mobile-edge computing (MEC) and wireless power transfer are technologies that can assist in the implementation of next generation wireless networks, which will deploy a large number of computational and energy limited devices. In this letter, we cons ider a point-to-point MEC system, where the device harvests energy from the access points (APs) transmitted signal to power the offloading and/or the local computation of a task. By taking into account the non-linearities of energy harvesting, we provide analytical expressions for the probability of successful computation and for the average number of successfully computed bits. Our results show that a hybrid scheme of partial offloading and local computation is not always efficient. In particular, the decision to offload and/or compute locally, depends on the systems parameters such as the distance to the AP and the number of bits that need to be computed.
In this article, we consider the problem of relay assisted computation offloading (RACO), in which user A aims to share the results of computational tasks with another user B through wireless exchange over a relay platform equipped with mobile edge c omputing capabilities, referred to as a mobile edge relay server (MERS). To support the computation offloading, we propose a hybrid relaying (HR) approach employing two orthogonal frequency bands, where the amplify-and-forward scheme is used in one band to exchange computational results, while the decode-and-forward scheme is used in the other band to transfer the unprocessed tasks. The motivation behind the proposed HR scheme for RACO is to adapt the allocation of computing and communication resources both to dynamic user requirements and to diverse computational tasks. Within this framework, we seek to minimize the weighted sum of the execution delay and the energy consumption in the RACO system by jointly optimizing the computation offloading ratio, the bandwidth allocation, the processor speeds, as well as the transmit power levels of both user $A$ and the MERS, under practical constraints on the available computing and communication resources. The resultant problem is formulated as a non-differentiable and nonconvex optimization program with highly coupled constraints. By adopting a series of transformations and introducing auxiliary variables, we first convert this problem into a more tractable yet equivalent form. We then develop an efficient iterative algorithm for its solution based on the concave-convex procedure. By exploiting the special structure of this problem, we also propose a simplified algorithm based on the inexact block coordinate descent method, with reduced computational complexity. Finally, we present numerical results that illustrate the advantages of the proposed algorithms over state-of-the-art benchmark schemes.
With the proliferation of latency-critical applications, fog-radio network (FRAN) has been envisioned as a paradigm shift enabling distributed deployment of cloud-clone facilities at the network edge. In this paper, we consider proactive caching for a one-user one-access point (AP) fog computing system over a finite time horizon, in which consecutive tasks of the same type of application are temporarily correlated. Under the assumption of predicable length of the task-input bits, we formulate a long-term weighted-sum energy minimization problem with three-slot correlation to jointly optimize computation offloading policies and caching decisions subject to stringent per-slot deadline constraints. The formulated problem is hard to solve due to the mixed-integer non-convexity. To tackle this challenge, first, we assume that task-related information are perfectly known {em a priori}, and provide offline solution leveraging the technique of semi-definite relaxation (SDR), thereby serving as theoretical upper bound. Next, based on the offline solution, we propose a sliding-window based online algorithm under arbitrarily distributed prediction error. Finally, the advantage of computation caching as well the proposed algorithm is verified by numerical examples by comparison with several benchmarks.
Age of Information (AoI), defined as the time elapsed since the generation of the latest received update, is a promising performance metric to measure data freshness for real-time status monitoring. In many applications, status information needs to b e extracted through computing, which can be processed at an edge server enabled by mobile edge computing (MEC). In this paper, we aim to minimize the average AoI within a given deadline by jointly scheduling the transmissions and computations of a series of update packets with deterministic transmission and computing times. The main analytical results are summarized as follows. Firstly, the minimum deadline to guarantee the successful transmission and computing of all packets is given. Secondly, a emph{no-wait computing} policy which intuitively attains the minimum AoI is introduced, and the feasibility condition of the policy is derived. Finally, a closed-form optimal scheduling policy is obtained on the condition that the deadline exceeds a certain threshold. The behavior of the optimal transmission and computing policy is illustrated by numerical results with different values of the deadline, which validates the analytical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا