ﻻ يوجد ملخص باللغة العربية
We present a comprehensive analysis of the multi-phase structure of the interstellar medium (ISM) and the stellar kinematics in the edge-on nearby galaxy UGC 10205 using integral field spectroscopy (IFS) data taken with MEGARA at the GTC. We explore both the neutral and the ionized gas phases using the interstellar Na ${small I}$ D doublet absorption (LR$-$V set-up, R $sim$ 6000) and the H$alpha$ emission line (HR$-$R set-up, R $sim$ 18000), respectively. The high-resolution data show the complexity of the H$alpha$ emission line profile revealing the detection of up to three kinematically distinct gaseous components. Despite of this fact, a thin disk model is able to reproduce the bulk of the ionized gas motions in the central regions of UGC 10205. The use of asymmetric drift corrections is needed to reconciliate the ionized and the stellar velocity rotation curves. We also report the detection of outflowing neutral gas material blueshifted by $sim$ 87 km s$^{-1}$. The main physical properties that describe the observed outflow are a total mass M$_{out}$ $=$ (4.55 $pm$ 0.06) $times$ 10$^{7}$ M$_{odot}$ and a cold gas mass outflow rate $dot{M}$$_{out}$ $=$ 0.78 $pm$ 0.03 M$_{odot}$ yr$^{-1}$. This work points out the necessity of exploiting high-resolution IFS data to understand the multi-phase components of the ISM and the multiple kinematical components in the central regions of nearby galaxies.
We present the spatially resolved gas and stellar kinematics of a sample of ten hidden type 1 AGNs in order to investigate the true nature of the central source and the scaling relation with host galaxy stellar velocity dispersion. The sample is sele
Here we report the first spatially resolved spectroscopic study for the galaxy PHL293B using the high-resolution GTC/MEGARA IFU. PHL293B is a local, extremely metal-poor, high ionization galaxy. This makes PHL 293B an excellent analogue for galaxies
Dusty, neutral outflows and inflows are a common feature of nearby star-forming galaxies. We characterize these flows in eight galaxies -- mostly AGN -- selected for their widespread NaI D signatures from the Siding Spring Southern Seyfert Spectrosco
The SINFONI survey for Unveiling the Physics and Effect of Radiative feedback (SUPER) aims at tracing and characterizing ionized gas outflows and their impact on star formation in a statistical sample of X-ray selected Active Galactic Nuclei (AGN) at
We present a comprehensive study of the Na I $lambda$5890, 5895 (Na I D) resonant lines in the Sloan Digital Sky Survey (SDSS, DR7) spectroscopic sample to look for neutral gas outflows in the local galaxies. Individual galaxy spectra are stacked in