ترغب بنشر مسار تعليمي؟ اضغط هنا

BDoS: Blockchain Denial of Service

274   0   0.0 ( 0 )
 نشر من قبل Michael Mirkin
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Proof-of-work (PoW) cryptocurrency blockchains like Bitcoin secure vast amounts of money. Their operators, called miners, expend resources to generate blocks and receive monetary rewards for their effort. Blockchains are, in principle, attractive targets for Denial-of-Service (DoS) attacks: There is fierce competition among coins, as well as potential gains from short selling. Classical DoS attacks, however, typically target a few servers and cannot scale to systems with many nodes. There have been no successful DoS attacks to date against prominent cryptocurrencies. We present Blockchain DoS (BDoS), the first incentive-based DoS attack that targets PoW cryptocurrencies. Unlike classical DoS, BDoS targets the systems mechanism design: It exploits the reward mechanism to discourage miner participation. Previous DoS attacks against PoW blockchains require an adversarys mining power to match that of all other miners. In contrast, BDoS can cause a blockchain to grind to a halt with significantly fewer resources, e.g., 21% as of March 2020 in Bitcoin, according to our empirical study. We find that Bitcoins vulnerability to BDoS increases rapidly as the mining industry matures and profitability drops. BDoS differs from known attacks like Selfish Mining in its aim not to increase an adversarys revenue, but to disrupt the system. Although it bears some algorithmic similarity to those attacks, it introduces a new adversarial model, goals, algorithm, and game-theoretic analysis. Beyond its direct implications for operational blockchains, BDoS introduces the novel idea that an adversary can manipulate miners incentives by proving the existence of blocks without actually publishing them.



قيم البحث

اقرأ أيضاً

87 - Linan Huang , Quanyan Zhu 2021
This work proposes a new class of proactive attacks called the Informational Denial-of-Service (IDoS) attacks that exploit the attentional human vulnerability. By generating a large volume of feints, IDoS attacks deplete the cognition resources of hu man operators to prevent humans from identifying the real attacks hidden among feints. This work aims to formally define IDoS attacks, quantify their consequences, and develop human-assistive security technologies to mitigate the severity level and risks of IDoS attacks. To this end, we model the feint and real attacks sequential arrivals with category labels as a semi-Markov process. The assistive technology strategically manages human attention by highlighting selective alerts periodically to prevent the distraction of other alerts. A data-driven approach is applied to evaluate human performance under different Attention Management (AM) strategies. Under a representative special case, we establish the computational equivalency between two dynamic programming representations to simplify the theoretical computation and the online learning. A case study corroborates the effectiveness of the learning framework. The numerical results illustrate how AM strategies can alleviate the severity level and the risk of IDoS attacks. Furthermore, we characterize the fundamental limits of the minimum severity level under all AM strategies and the maximum length of the inspection period to reduce the IDoS risks.
Finite-time stability of networked control systems under Denial of Service (DoS) attacks are investigated in this paper, where the communication between the plant and the controller is compromised at some time intervals. Toward this goal, first an ev ent-triggered mechanism based on the variation rate of the Lyapunov function is proposed such that the closed-loop system remains finite-time stable (FTS) and at the same time, the amount data exchange in the network is reduced. Next, the vulnerability of the proposed event-triggered finite-time controller in the presence of DoS attacks are evaluated and sufficient conditions on the DoS duration and frequency are obtained to assure the finite-time stability of the closed-loop system in the presence of DoS attack where no assumption on the DoS attack in terms of following a certain probabilistic or a well-structured periodic model is considered. Finally, the efficiency of the proposed approach is demonstrated through a simulation study.
87 - Yoo Chung 2011
Distributed denial of service attacks are often considered a security problem. While this may be the way to view the problem with todays Internet, new network architectures attempting to address the issue should view it as a scalability problem. In a ddition, they need to address the problem based on a rigorous foundation.
114 - Xin Liu , Xiaowei Yang , Yong Xia 2010
Denial of Service (DoS) attacks frequently happen on the Internet, paralyzing Internet services and causing millions of dollars of financial loss. This work presents NetFence, a scalable DoS-resistant network architecture. NetFence uses a novel mecha nism, secure congestion policing feedback, to enable robust congestion policing inside the network. Bottleneck routers update the feedback in packet headers to signal congestion, and access routers use it to police senders traffic. Targeted DoS victims can use the secure congestion policing feedback as capability tokens to suppress unwanted traffic. When compromised senders and receivers organize into pairs to congest a network link, NetFence provably guarantees a legitimate sender its fair share of network resources without keeping per-host state at the congested link. We use a Linux implementation, ns-2 simulations, and theoretical analysis to show that NetFence is an effective and scalable DoS solution: it reduces the amount of state maintained by a congested router from per-host to at most per-(Autonomous System).
We unveil the existence of a vulnerability in Wi-Fi, which allows an adversary to remotely launch a Denial-of-Service (DoS) attack that propagates both in time and space. This vulnerability stems from a coupling effect induced by hidden nodes. Cascad ing DoS attacks can congest an entire network and do not require the adversary to violate any protocol. We demonstrate the feasibility of such attacks through experiments with real Wi-Fi cards, extensive ns-3 simulations, and theoretical analysis. The simulations show that the attack is effective both in networks operating under fixed and varying bit rates, as well as ad hoc and infrastructure modes. To gain insight into the root-causes of the attack, we model the network as a dynamical system and analyze its limiting behavior. The model predicts that a phase transition (and hence a cascading attack) is possible when the retry limit parameter of Wi-Fi is greater or equal to 7, and explicitly characterizes the phase transition region in terms of the system parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا