ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite-Time Stability Under Denial of Service

80   0   0.0 ( 0 )
 نشر من قبل Mohammadreza Doostmohammadian
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Finite-time stability of networked control systems under Denial of Service (DoS) attacks are investigated in this paper, where the communication between the plant and the controller is compromised at some time intervals. Toward this goal, first an event-triggered mechanism based on the variation rate of the Lyapunov function is proposed such that the closed-loop system remains finite-time stable (FTS) and at the same time, the amount data exchange in the network is reduced. Next, the vulnerability of the proposed event-triggered finite-time controller in the presence of DoS attacks are evaluated and sufficient conditions on the DoS duration and frequency are obtained to assure the finite-time stability of the closed-loop system in the presence of DoS attack where no assumption on the DoS attack in terms of following a certain probabilistic or a well-structured periodic model is considered. Finally, the efficiency of the proposed approach is demonstrated through a simulation study.



قيم البحث

اقرأ أيضاً

In this paper, we study the problem of localizing the sensors positions in presence of denial-of-service (DoS) attacks. We consider a general attack model, in which the attacker action is only constrained through the frequency and duration of DoS att acks. We propose a distributed iterative localization algorithm with an abandonment strategy based on the barycentric coordinate of a sensor with respect to its neighbors, which is computed through relative distance measurements. In particular, if a sensors communication links for receiving its neighbors information lose packets due to DoS attacks, then the sensor abandons the location estimation. When the attacker launches DoS attacks, the AS-DILOC algorithm is proved theoretically to be able to accurately locate the sensors regardless of the attack strategy at each time. The effectiveness of the proposed algorithm is demonstrated through simulation examples.
The resilience of cyberphysical systems to denial-of-service (DoS) and integrity attacks is studied in this paper. The cyberphysical system is modeled as a linear structured system, and its resilience to an attack is interpreted in a graph theoretica l framework. The structural resilience of the system is characterized in terms of unmatched vertices in maximum matchings of the bipartite graph and connected components of directed graph representations of the system under attack. We first present conditions for the system to be resilient to DoS attacks when an adversary may block access or turn off certain inputs to the system. We extend this analysis to characterize resilience of the system when an adversary might additionally have the ability to affect the implementation of state-feedback control strategies. This is termed an integrity attack. We establish conditions under which a system that is structurally resilient to a DoS attack will also be resilient to a certain class of integrity attacks. Finally, we formulate an extension to the case of switched linear systems, and derive conditions for such systems to be structurally resilient to a DoS attack.
This technical note studies Lyapunov-like conditions to ensure a class of dynamical systems to exhibit predefined-time stability. The origin of a dynamical system is predefined-time stable if it is fixed-time stable and an upper bound of the settling -time function can be arbitrarily chosen a priori through a suitable selection of the system parameters. We show that the studied Lyapunov-like conditions allow to demonstrate equivalence between previous Lyapunov theorems for predefined-time stability for autonomous systems. Moreover, the obtained Lyapunov-like theorem is extended for analyzing the property of predefined-time ultimate boundedness with predefined bound, which is useful when analyzing uncertain dynamical systems. Therefore, the proposed results constitute a general framework for analyzing predefined-time stability, and they also unify a broad class of systems which present the predefined-time stability property. On the other hand, the proposed framework is used to design robust controllers for affine control systems, which induce predefined-time stability (predefined-time ultimate boundedness of the solutions) w.r.t. to some desired manifold. A simulation example is presented to show the behavior of a developed controller, especially regarding the settling time estimation.
Proof-of-work (PoW) cryptocurrency blockchains like Bitcoin secure vast amounts of money. Their operators, called miners, expend resources to generate blocks and receive monetary rewards for their effort. Blockchains are, in principle, attractive tar gets for Denial-of-Service (DoS) attacks: There is fierce competition among coins, as well as potential gains from short selling. Classical DoS attacks, however, typically target a few servers and cannot scale to systems with many nodes. There have been no successful DoS attacks to date against prominent cryptocurrencies. We present Blockchain DoS (BDoS), the first incentive-based DoS attack that targets PoW cryptocurrencies. Unlike classical DoS, BDoS targets the systems mechanism design: It exploits the reward mechanism to discourage miner participation. Previous DoS attacks against PoW blockchains require an adversarys mining power to match that of all other miners. In contrast, BDoS can cause a blockchain to grind to a halt with significantly fewer resources, e.g., 21% as of March 2020 in Bitcoin, according to our empirical study. We find that Bitcoins vulnerability to BDoS increases rapidly as the mining industry matures and profitability drops. BDoS differs from known attacks like Selfish Mining in its aim not to increase an adversarys revenue, but to disrupt the system. Although it bears some algorithmic similarity to those attacks, it introduces a new adversarial model, goals, algorithm, and game-theoretic analysis. Beyond its direct implications for operational blockchains, BDoS introduces the novel idea that an adversary can manipulate miners incentives by proving the existence of blocks without actually publishing them.
177 - Hao Zhou , Anye Zhou , Tienan Li 2021
Current commercial adaptive cruise control (ACC) systems consist of an upper-level planner controller that decides the optimal trajectory that should be followed, and a low-level controller in charge of sending the gas/brake signals to the mechanical system to actually move the vehicle. We find that the low-level controller has a significant impact on the string stability (SS) even if the planner is string stable: (i) a slow controller deteriorates the SS, (ii) slow controllers are common as they arise from insufficient control gains, from a weak gas/brake system or both, and (iii) the integral term in a slow controller causes undesired overshooting which affects the SS. Accordingly, we suggest tuning up the proportional/feedforward gain and ensuring the gas/brake is not weak. The study results are validated both numerically and empirically with data from commercial cars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا