ﻻ يوجد ملخص باللغة العربية
Artificial Intelligence (AI) can now automate the algorithm selection, feature engineering, and hyperparameter tuning steps in a machine learning workflow. Commonly known as AutoML or AutoAI, these technologies aim to relieve data scientists from the tedious manual work. However, todays AutoAI systems often present only limited to no information about the process of how they select and generate model results. Thus, users often do not understand the process, neither do they trust the outputs. In this short paper, we provide a first user evaluation by 10 data scientists of an experimental system, AutoAIViz, that aims to visualize AutoAIs model generation process. We find that the proposed system helps users to complete the data science tasks, and increases their understanding, toward the goal of increasing trust in the AutoAI system.
In the NeurIPS 2018 Artificial Intelligence for Prosthetics challenge, participants were tasked with building a controller for a musculoskeletal model with a goal of matching a given time-varying velocity vector. Top participants were invited to desc
Nuclear magnetic resonance (NMR) spectroscopy is a powerful method for the investigation of three-dimensional structures of biological molecules such as proteins. Determining a protein structure is essential for understanding its function and alterat
Dry eye disease (DED) has a prevalence of between 5 and 50%, depending on the diagnostic criteria used and population under study. However, it remains one of the most underdiagnosed and undertreated conditions in ophthalmology. Many tests used in the
Parallel coordinates plot is one of the most popular and widely used visualization techniques for multi-dimensional data sets. Its main challenges for large-scale data sets are visual clutter and overplotting which hamper the recognition of patterns
Machine learning (ML), especially deep neural networks (DNNs) have been widely used in various applications, including several safety-critical ones (e.g. autonomous driving). As a result, recent research about adversarial examples has raised great co