ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring Mother-Infant Emotions By Audio Sensing

144   0   0.0 ( 0 )
 نشر من قبل Xuewen Yao
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been suggested in developmental psychology literature that the communication of affect between mothers and their infants correlates with the socioemotional and cognitive development of infants. In this study, we obtained day-long audio recordings of 10 mother-infant pairs in order to study their affect communication in speech with a focus on mothers speech. In order to build a model for speech emotion detection, we used the Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) and trained a Convolutional Neural Nets model which is able to classify 6 different emotions at 70% accuracy. We applied our model to mothers speech and found the dominant emotions were angry and sad, which were not true. Based on our own observations, we concluded that emotional speech databases made with the help of actors cannot generalize well to real-life settings, suggesting an active learning or unsupervised approach in the future.

قيم البحث

اقرأ أيضاً

High quality labeled datasets have allowed deep learning to achieve impressive results on many sound analysis tasks. Yet, it is labor-intensive to accurately annotate large amount of audio data, and the dataset may contain noisy labels in the practic al settings. Meanwhile, the deep neural networks are susceptive to those incorrect labeled data because of their outstanding memorization ability. In this paper, we present a novel framework, named CrossFilter, to combat the noisy labels problem for audio tagging. Multiple representations (such as, Logmel and MFCC) are used as the input of our framework for providing more complementary information of the audio. Then, though the cooperation and interaction of two neural networks, we divide the dataset into curated and noisy subsets by incrementally pick out the possibly correctly labeled data from the noisy data. Moreover, our approach leverages the multi-task learning on curated and noisy subsets with different loss function to fully utilize the entire dataset. The noisy-robust loss function is employed to alleviate the adverse effects of incorrect labels. On both the audio tagging datasets FSDKaggle2018 and FSDKaggle2019, empirical results demonstrate the performance improvement compared with other competing approaches. On FSDKaggle2018 dataset, our method achieves state-of-the-art performance and even surpasses the ensemble models.
Audio captioning aims to automatically generate a natural language description of an audio clip. Most captioning models follow an encoder-decoder architecture, where the decoder predicts words based on the audio features extracted by the encoder. Con volutional neural networks (CNNs) and recurrent neural networks (RNNs) are often used as the audio encoder. However, CNNs can be limited in modelling temporal relationships among the time frames in an audio signal, while RNNs can be limited in modelling the long-range dependencies among the time frames. In this paper, we propose an Audio Captioning Transformer (ACT), which is a full Transformer network based on an encoder-decoder architecture and is totally convolution-free. The proposed method has a better ability to model the global information within an audio signal as well as capture temporal relationships between audio events. We evaluate our model on AudioCaps, which is the largest audio captioning dataset publicly available. Our model shows competitive performance compared to other state-of-the-art approaches.
In the domain of social signal processing, audio event detection is a promising avenue for accessing daily behaviors that contribute to health and well-being. However, despite advances in mobile computing and machine learning, audio behavior detectio n models are largely constrained to data collected in controlled settings, such as call centers. This is problematic as it means their performance is unlikely to generalize to real-world applications. In this paper, we present a novel dataset of infant distress vocalizations compiled from over 780 hours of real-world audio data, collected via recorders worn by infants. We develop a model that combines deep spectrum and acoustic features to detect and classify infant distress vocalizations, which dramatically outperforms models trained on equivalent real-world data (F1 score of 0.630 vs 0.166). We end by discussing how dataset size can facilitate such gains in accuracy, critical when considering noisy and complex naturalistic data.
Most audio processing pipelines involve transformations that act on fixed-dimensional input representations of audio. For example, when using the Short Time Fourier Transform (STFT) the DFT size specifies a fixed dimension for the input representatio n. As a consequence, most audio machine learning models are designed to process fixed-size vector inputs which often prohibits the repurposing of learned models on audio with different sampling rates or alternative representations. We note, however, that the intrinsic spectral information in the audio signal is invariant to the choice of the input representation or the sampling rate. Motivated by this, we introduce a novel way of processing audio signals by treating them as a collection of points in feature space, and we use point cloud machine learning models that give us invariance to the choice of representation parameters, such as DFT size or the sampling rate. Additionally, we observe that these methods result in smaller models, and allow us to significantly subsample the input representation with minimal effects to a trained model performance.
In this paper, we investigate the potential effect of the adversarially training on the robustness of six advanced deep neural networks against a variety of targeted and non-targeted adversarial attacks. We firstly show that, the ResNet-56 model trai ned on the 2D representation of the discrete wavelet transform appended with the tonnetz chromagram outperforms other models in terms of recognition accuracy. Then we demonstrate the positive impact of adversarially training on this model as well as other deep architectures against six types of attack algorithms (white and black-box) with the cost of the reduced recognition accuracy and limited adversarial perturbation. We run our experiments on two benchmarking environmental sound datasets and show that without any imposed limitations on the budget allocations for the adversary, the fooling rate of the adversarially trained models can exceed 90%. In other words, adversarial attacks exist in any scales, but they might require higher adversarial perturbations compared to non-adversarially trained models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا