ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry enhanced boundary qubits at infinite temperature

276   0   0.0 ( 0 )
 نشر من قبل Jack Kemp
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The $mathbb{Z}_2 times mathbb{Z}_2$ symmetry protected topological (SPT) phase hosts a robust boundary qubit at zero temperature. At finite energy density, the SPT phase is destroyed and bulk observables equilibrate in finite time. Nevertheless, we predict parametric regimes in which the boundary qubit survives to arbitrarily high temperature, with an exponentially longer coherence time than that of the thermal bulk degrees of freedom. In a dual picture, the persistence of the qubit stems from the inability of the bulk to absorb the virtual $mathbb{Z}_2 times mathbb{Z}_2$ domain walls emitted by the edge during the relaxation process. We confirm the long coherence time by exact diagonalization and connect it to the presence of a pair of conjugate almost strong zero modes. Our results provide a route to experimentally construct long-lived coherent boundary qubits at infinite temperature in disorder-free systems.

قيم البحث

اقرأ أيضاً

We study the disordered Heisenberg spin chain, which exhibits many body localization at strong disorder, in the weak to moderate disorder regime. A continued fraction calculation of dynamical correlations is devised, using a variational extrapolation of recurrents. Good convergence for the infinite chain limit is shown. We find that the local spin correlations decay at long times as $C sim t^{-beta}$, while the conductivity exhibits a low frequency power law $sigma sim omega^{alpha}$. The exponents depict sub-diffusive behavior $ beta < 1/2, alpha> 0 $ at all finite disorders, and convergence to the scaling result, $alpha+2beta = 1$, at large disorders.
Topological qubits based on $SU(N)$-symmetric valence-bond solid models are constructed. A logical topological qubit is the ground subspace with two-fold degeneracy, which is due to the spontaneous breaking of a global parity symmetry. A logical $Z$- rotation by angle $frac{2pi}{N}$, for any integer $N > 2$, is provided by a global twist operation, which is of topological nature and protected by the energy gap. A general concatenation scheme with standard quantum error-correction codes is also proposed, which can lead to better codes. Generic error-correction properties of symmetry-protected topological order are also demonstrated.
We address the problem of the minus sign sampling for two electron systems using the path integral approach. We show that this problem can be reexpressed as one of computing free energy differences and sampling the tails of statistical distributions. Using Metadynamics, a realistic problem like that of two electrons confined in a quantum dot can be solved. We believe that this is a strategy that can possibly be extended to more complex systems.
Topological insulators and superconductors at finite temperature can be characterized by the topological Uhlmann phase. However, a direct experimental measurement of this invariant has remained elusive in condensed matter systems. Here, we report a m easurement of the topological Uhlmann phase for a topological insulator simulated by a system of entangled qubits in the IBM Quantum Experience platform. By making use of ancilla states, otherwise unobservable phases carrying topological information about the system become accessible, enabling the experimental determination of a complete phase diagram including environmental effects. We employ a state-independent measurement protocol which does not involve prior knowledge of the system state. The proposed measurement scheme is extensible to interacting particles and topological models with a large number of bands.
We propose a novel platform for quantum many body simulations of dipolar spin models using current circuit QED technology. Our basic building blocks are 3D Transmon qubits where we use the naturally occurring dipolar interactions to realize interacti ng spin systems. This opens the way toward the realization of a broad class of tunable spin models in both two- and one-dimensional geometries. We illustrate the potential offered by these systems in the context of dimerized Majumdar-Ghosh-type phases, archetypical examples of quantum magnetism, showing how such phases are robust against disorder and decoherence, and could be observed within state-of-the-art experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا