ترغب بنشر مسار تعليمي؟ اضغط هنا

U-Net with spatial pyramid pooling for drusen segmentation in optical coherence tomography

132   0   0.0 ( 0 )
 نشر من قبل Rhona Asgari
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The presence of drusen is the main hallmark of early/intermediate age-related macular degeneration (AMD). Therefore, automated drusen segmentation is an important step in image-guided management of AMD. There are two common approaches to drusen segmentation. In the first, the drusen are segmented directly as a binary classification task. In the second approach, the surrounding retinal layers (outer boundary retinal pigment epithelium (OBRPE) and Bruchs membrane (BM)) are segmented and the remaining space between these two layers is extracted as drusen. In this work, we extend the standard U-Net architecture with spatial pyramid pooling components to introduce global feature context. We apply the model to the task of segmenting drusen together with BM and OBRPE. The proposed network was trained and evaluated on a longitudinal OCT dataset of 425 scans from 38 patients with early/intermediate AMD. This preliminary study showed that the proposed network consistently outperformed the standard U-net model.

قيم البحث

اقرأ أيضاً

Automated drusen segmentation in retinal optical coherence tomography (OCT) scans is relevant for understanding age-related macular degeneration (AMD) risk and progression. This task is usually performed by segmenting the top/bottom anatomical interf aces that define drusen, the outer boundary of the retinal pigment epithelium (OBRPE) and the Bruchs membrane (BM), respectively. In this paper we propose a novel multi-decoder architecture that tackles drusen segmentation as a multitask problem. Instead of training a multiclass model for OBRPE/BM segmentation, we use one decoder per target class and an extra one aiming for the area between the layers. We also introduce connections between each class-specific branch and the additional decoder to increase the regularization effect of this surrogate task. We validated our approach on private/public data sets with 166 early/intermediate AMD Spectralis, and 200 AMD and control Bioptigen OCT volumes, respectively. Our method consistently outperformed several baselines in both layer and drusen segmentation evaluations.
Retinal blood vessel can assist doctors in diagnosis of eye-related diseases such as diabetes and hypertension, and its segmentation is particularly important for automatic retinal image analysis. However, it is challenging to segment these vessels s tructures, especially the thin capillaries from the color retinal image due to low contrast and ambiguousness. In this paper, we propose pyramid U-Net for accurate retinal vessel segmentation. In pyramid U-Net, the proposed pyramid-scale aggregation blocks (PSABs) are employed in both the encoder and decoder to aggregate features at higher, current and lower levels. In this way, coarse-to-fine context information is shared and aggregated in each block thus to improve the location of capillaries. To further improve performance, two optimizations including pyramid inputs enhancement and deep pyramid supervision are applied to PSABs in the encoder and decoder, respectively. For PSABs in the encoder, scaled input images are added as extra inputs. While for PSABs in the decoder, scaled intermediate outputs are supervised by the scaled segmentation labels. Extensive evaluations show that our pyramid U-Net outperforms the current state-of-the-art methods on the public DRIVE and CHASE-DB1 datasets.
Automated vascular segmentation on optical coherence tomography angiography (OCTA) is important for the quantitative analyses of retinal microvasculature in neuroretinal and systemic diseases. Despite recent improvements, artifacts continue to pose c hallenges in segmentation. Our study focused on removing the speckle noise artifact from OCTA images when performing segmentation. Speckle noise is common in OCTA and is particularly prominent over large non-perfusion areas. It may interfere with the proper assessment of retinal vasculature. In this study, we proposed a novel Supervision Vessel Segmentation network (SVS-net) to detect vessels of different sizes. The SVS-net includes a new attention-based module to describe vessel positions and facilitate the understanding of the network learning process. The model is efficient and explainable and could be utilized to reduce the need for manual labeling. Our SVS-net had better performance in accuracy, recall, F1 score, and Kappa score when compared to other well recognized models.
With the FDA approval of Artificial Intelligence (AI) for point-of-care clinical diagnoses, model generalizability is of the utmost importance as clinical decision-making must be domain-agnostic. A method of tackling the problem is to increase the da taset to include images from a multitude of domains; while this technique is ideal, the security requirements of medical data is a major limitation. Additionally, researchers with developed tools benefit from the addition of open-sourced data, but are limited by the difference in domains. Herewith, we investigated the implementation of a Cycle-Consistent Generative Adversarial Networks (CycleGAN) for the domain adaptation of Optical Coherence Tomography (OCT) volumes. This study was done in collaboration with the Biomedical Optics Research Group and Functional & Anatomical Imaging & Shape Analysis Lab at Simon Fraser University. In this study, we investigated a learning-based approach of adapting the domain of a publicly available dataset, UK Biobank dataset (UKB). To evaluate the performance of domain adaptation, we utilized pre-existing retinal layer segmentation tools developed on a different set of RETOUCH OCT data. This study provides insight on state-of-the-art tools for domain adaptation compared to traditional processing techniques as well as a pipeline for adapting publicly available retinal data to the domains previously used by our collaborators.
Automatic segmentation of cardiac magnetic resonance imaging (MRI) facilitates efficient and accurate volume measurement in clinical applications. However, due to anisotropic resolution and ambiguous border (e.g., right ventricular endocardium), exis ting methods suffer from the degradation of accuracy and robustness in 3D cardiac MRI video segmentation. In this paper, we propose a novel Deformable U-Net (DeU-Net) to fully exploit spatio-temporal information from 3D cardiac MRI video, including a Temporal Deformable Aggregation Module (TDAM) and a Deformable Global Position Attention (DGPA) network. First, the TDAM takes a cardiac MRI video clip as input with temporal information extracted by an offset prediction network. Then we fuse extracted temporal information via a temporal aggregation deformable convolution to produce fused feature maps. Furthermore, to aggregate meaningful features, we devise the DGPA network by employing deformable attention U-Net, which can encode a wider range of multi-dimensional contextual information into global and local features. Experimental results show that our DeU-Net achieves the state-of-the-art performance on commonly used evaluation metrics, especially for cardiac marginal information (ASSD and HD).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا