ترغب بنشر مسار تعليمي؟ اضغط هنا

DeU-Net: Deformable U-Net for 3D Cardiac MRI Video Segmentation

370   0   0.0 ( 0 )
 نشر من قبل Shunjie Dong
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Automatic segmentation of cardiac magnetic resonance imaging (MRI) facilitates efficient and accurate volume measurement in clinical applications. However, due to anisotropic resolution and ambiguous border (e.g., right ventricular endocardium), existing methods suffer from the degradation of accuracy and robustness in 3D cardiac MRI video segmentation. In this paper, we propose a novel Deformable U-Net (DeU-Net) to fully exploit spatio-temporal information from 3D cardiac MRI video, including a Temporal Deformable Aggregation Module (TDAM) and a Deformable Global Position Attention (DGPA) network. First, the TDAM takes a cardiac MRI video clip as input with temporal information extracted by an offset prediction network. Then we fuse extracted temporal information via a temporal aggregation deformable convolution to produce fused feature maps. Furthermore, to aggregate meaningful features, we devise the DGPA network by employing deformable attention U-Net, which can encode a wider range of multi-dimensional contextual information into global and local features. Experimental results show that our DeU-Net achieves the state-of-the-art performance on commonly used evaluation metrics, especially for cardiac marginal information (ASSD and HD).



قيم البحث

اقرأ أيضاً

Retinal blood vessel can assist doctors in diagnosis of eye-related diseases such as diabetes and hypertension, and its segmentation is particularly important for automatic retinal image analysis. However, it is challenging to segment these vessels s tructures, especially the thin capillaries from the color retinal image due to low contrast and ambiguousness. In this paper, we propose pyramid U-Net for accurate retinal vessel segmentation. In pyramid U-Net, the proposed pyramid-scale aggregation blocks (PSABs) are employed in both the encoder and decoder to aggregate features at higher, current and lower levels. In this way, coarse-to-fine context information is shared and aggregated in each block thus to improve the location of capillaries. To further improve performance, two optimizations including pyramid inputs enhancement and deep pyramid supervision are applied to PSABs in the encoder and decoder, respectively. For PSABs in the encoder, scaled input images are added as extra inputs. While for PSABs in the decoder, scaled intermediate outputs are supervised by the scaled segmentation labels. Extensive evaluations show that our pyramid U-Net outperforms the current state-of-the-art methods on the public DRIVE and CHASE-DB1 datasets.
Vessel stenosis is a major risk factor in cardiovascular diseases (CVD). To analyze the degree of vessel stenosis for supporting the treatment management, extraction of coronary artery area from Computed Tomographic Angiography (CTA) is regarded as a key procedure. However, manual segmentation by cardiologists may be a time-consuming task, and present a significant inter-observer variation. Although various computer-aided approaches have been developed to support segmentation of coronary arteries in CTA, the results remain unreliable due to complex attenuation appearance of plaques, which are the cause of the stenosis. To overcome the difficulties caused by attenuation ambiguity, in this paper, a 3D multi-channel U-Net architecture is proposed for fully automatic 3D coronary artery reconstruction from CTA. Other than using the original CTA image, the main idea of the proposed approach is to incorporate the vesselness map into the input of the U-Net, which serves as the reinforcing information to highlight the tubular structure of coronary arteries. The experimental results show that the proposed approach could achieve a Dice Similarity Coefficient (DSC) of 0.8 in comparison to around 0.6 attained by previous CNN approaches.
Polyps are the predecessors to colorectal cancer which is considered as one of the leading causes of cancer-related deaths worldwide. Colonoscopy is the standard procedure for the identification, localization, and removal of colorectal polyps. Due to variability in shape, size, and surrounding tissue similarity, colorectal polyps are often missed by the clinicians during colonoscopy. With the use of an automatic, accurate, and fast polyp segmentation method during the colonoscopy, many colorectal polyps can be easily detected and removed. The ``Medico automatic polyp segmentation challenge provides an opportunity to study polyp segmentation and build an efficient and accurate segmentation algorithm. We use the U-Net with pre-trained ResNet50 as the encoder for the polyp segmentation. The model is trained on Kvasir-SEG dataset provided for the challenge and tested on the organizers dataset and achieves a dice coefficient of 0.8154, Jaccard of 0.7396, recall of 0.8533, precision of 0.8532, accuracy of 0.9506, and F2 score of 0.8272, demonstrating the generalization ability of our model.
A number of methods based on deep learning have been applied to medical image segmentation and have achieved state-of-the-art performance. Due to the importance of chest x-ray data in studying COVID-19, there is a demand for state-of-the-art models c apable of precisely segmenting soft tissue on the chest x-rays. The dataset for exploring best segmentation model is from Montgomery and Shenzhen hospital which had opened in 2014. The most famous technique is U-Net which has been used to many medical datasets including the Chest X-rays. However, most variant U-Nets mainly focus on extraction of contextual information and skip connections. There is still a large space for improving extraction of spatial features. In this paper, we propose a dual encoder fusion U-Net framework for Chest X-rays based on Inception Convolutional Neural Network with dilation, Densely Connected Recurrent Convolutional Neural Network, which is named DEFU-Net. The densely connected recurrent path extends the network deeper for facilitating contextual feature extraction. In order to increase the width of network and enrich representation of features, the inception blocks with dilation are adopted. The inception blocks can capture globally and locally spatial information from various receptive fields. At the same time, the two paths are fused by summing features, thus preserving the contextual and spatial information for decoding part. This multi-learning-scale model is benefiting in Chest X-ray dataset from two different manufacturers (Montgomery and Shenzhen hospital). The DEFU-Net achieves the better performance than basic U-Net, residual U-Net, BCDU-Net, R2U-Net and attention R2U-Net. This model has proved the feasibility for mixed dataset and approaches state-of-the-art. The source code for this proposed framework is public https://github.com/uceclz0/DEFU-Net.
Fine-tuning a network which has been trained on a large dataset is an alternative to full training in order to overcome the problem of scarce and expensive data in medical applications. While the shallow layers of the network are usually kept unchang ed, deeper layers are modified according to the new dataset. This approach may not work for ultrasound images due to their drastically different appearance. In this study, we investigated the effect of fine-tuning different layers of a U-Net which was trained on segmentation of natural images in breast ultrasound image segmentation. Tuning the contracting part and fixing the expanding part resulted in substantially better results compared to fixing the contracting part and tuning the expanding part. Furthermore, we showed that starting to fine-tune the U-Net from the shallow layers and gradually including more layers will lead to a better performance compared to fine-tuning the network from the deep layers moving back to shallow layers. We did not observe the same results on segmentation of X-ray images, which have different salient features compared to ultrasound, it may therefore be more appropriate to fine-tune the shallow layers rather than deep layers. Shallow layers learn lower level features (including speckle pattern, and probably the noise and artifact properties) which are critical in automatic segmentation in this modality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا