ﻻ يوجد ملخص باللغة العربية
We investigate localization properties in a two-coupled uniform chains with quasiperiodic modulation on interchain coupling strength. We demonstrate that this ladder is equivalent to a Aubry-Andre (AA) chain when two legs are symmetric. Analytical and numerical results indicate the appearance of mobility edges for asymmetric ladder. We also propose an easily engineered quasiperiodic ladder system which is a moir{e} superlattice system consisting of two-coupled uniform chains. An irrational lattice constant difference results in quasiperiodic structure. Numerical simulations show that such a system supports mobility edge. Additionally, we find that the mobility edge can be detected by a dynamic method, which bases on the measurement of surviving probability in the presence of a single imaginary negative potential as a leakage. The result provides insightful information about the localization transitions and mobility edge in experiment.
Mobility edges, separating localized from extended states, are known to arise in the single-particle energy spectrum of disordered systems in dimension strictly higher than two and certain quasiperiodic models in one dimension. Here we unveil a diffe
The mobility edges (MEs) in energy which separate extended and localized states are a central concept in understanding the localization physics. In one-dimensional (1D) quasiperiodic systems, while MEs may exist for certain cases, the analytic result
Quantum localization in 1D non-Hermitian systems, especially the search for exact single-particle mobility edges, has attracted considerable interest recently. While much progress has been made, the available methods to determine the ME of such model
In this paper, we study a one-dimensional tight-binding model with tunable incommensurate potentials. Through the analysis of the inverse participation rate, we uncover that the wave functions corresponding to the energies of the system exhibit diffe
We aim to study a one-dimensional $p$-wave superconductor with quasiperiodic on-site potentials. A modified real-space-Pfaffian method is applied to calculate the topological invariants. We confirm that the Majorana zero mode is protected by the nont