ﻻ يوجد ملخص باللغة العربية
We study one-dimensional spin-1/2 models in which strict confinement of Ising domain walls leads to the fragmentation of Hilbert space into exponentially many disconnected subspaces. Whereas most previous works emphasize dipole moment conservation as an essential ingredient for such fragmentation, we instead require two commuting U(1) conserved quantities associated with the total domain-wall number and the total magnetization. The latter arises naturally from the confinement of domain walls. Remarkably, while some connected components of the Hilbert space thermalize, others are integrable by Bethe ansatz. We further demonstrate how this Hilbert-space fragmentation pattern arises perturbatively in the confining limit of $mathbb{Z}_2$ gauge theory coupled to fermionic matter, leading to a hierarchy of time scales for motion of the fermions. This model can be realized experimentally in two complementary settings.
The discovery of Quantum Many-Body Scars (QMBS) both in Rydberg atom simulators and in the Affleck-Kennedy-Lieb-Tasaki (AKLT) spin-1 chain model, have shown that a weak violation of ergodicity can still lead to rich experimental and theoretical physi
Motivated by previous works on a Floquet version of the PXP model [Mukherjee {it et al.} Phys. Rev. B 102, 075123 (2020), Mukherjee {it et al.} Phys. Rev. B 101, 245107 (2020)], we study a one-dimensional spin-$1/2$ lattice model with three-spin inte
Although most quantum systems thermalize locally on short time scales independent of initial conditions, recent developments have shown this is not always the case. Lattice geometry and quantum mechanics can conspire to produce constrained quantum dy
Certain disorder-free Hamiltonians can be non-ergodic due to a emph{strong fragmentation} of the Hilbert space into disconnected sectors. Here, we characterize such systems by introducing the notion of `statistically localized integrals of motion (SL
Fracton systems exhibit restricted mobility of their excitations due to the presence of higher-order conservation laws. Here we study the time evolution of a one-dimensional fracton system with charge and dipole moment conservation using a random uni