ﻻ يوجد ملخص باللغة العربية
The discovery of Quantum Many-Body Scars (QMBS) both in Rydberg atom simulators and in the Affleck-Kennedy-Lieb-Tasaki (AKLT) spin-1 chain model, have shown that a weak violation of ergodicity can still lead to rich experimental and theoretical physics. In this review, we provide a pedagogical introduction to and an overview of the exact results on weak ergodicity breaking via QMBS in isolated quantum systems with the help of simple examples such as the fermionic Hubbard model. We also discuss various mechanisms and unifying formalisms that have been proposed to encompass the plethora of systems exhibiting QMBS. We cover examples of equally-spaced towers that lead to exact revivals for particular initial states, as well as isolated examples of QMBS. Finally, we review Hilbert Space Fragmentation, a related phenomenon where systems exhibit a richer variety of ergodic and non-ergodic behaviors, and discuss its connections to QMBS.
We obtain multiple exact results on the entanglement of the exact excited states of non-integrable models we introduced in arXiv:1708.05021. We first discuss a general formalism to analytically compute the entanglement spectra of exact excited states
We study a kinetically constrained pair hopping model that arises within a Landau level in the quantum Hall effect. At filling $ u = 1/3$, the model exactly maps onto the so-called PXP model, a constrained model for the Rydberg atom chain that is num
We study the spin-1 XY model on a hypercubic lattice in $d$ dimensions and show that this well-known nonintegrable model hosts an extensive set of anomalous finite-energy-density eigenstates with remarkable properties. Namely, they exhibit subextensi
We study one-dimensional spin-1/2 models in which strict confinement of Ising domain walls leads to the fragmentation of Hilbert space into exponentially many disconnected subspaces. Whereas most previous works emphasize dipole moment conservation as
We revisit the $eta$-pairing states in Hubbard models and explore their connections to quantum many-body scars to discover a universal scars mechanism. $eta$-pairing occurs due to an algebraic structure known as a Spectrum Generating Algebra (SGA), g