ترغب بنشر مسار تعليمي؟ اضغط هنا

NMR study of the spin excitations in the frustrated antiferromagnet Yb(BaBO$_3$)$_3$ with a triangular lattice

263   0   0.0 ( 0 )
 نشر من قبل Long Ma
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the spin excitation properties of the frustrated triangular-lattice antiferromagnet Yb(BaBO$_3$)$_3$ with nuclear magnetic resonance. From the spectral analysis, neither magnetic ordering nor spin freezing is observed with temperature down to $T=0.26$ K, far below its Curie-Weiss temperature $|theta_w|sim2.3$ K. From the nuclear relaxation measurement, precise temperature-independent spin-lattice relaxation rates are observed at low temperatures under a weak magnetic field, indicating the gapless spin excitations. Further increasing the field intensity, we observe a spin excitation gap with the gap size proportional to the field intensity. These phenomena suggest a very unusual strongly correlated quantum disordered phase, and the implications for the quantum spin liquid state are further discussed.

قيم البحث

اقرأ أيضاً

Here we present a neutron scattering-based study of magnetic excitations and magnetic order in NaYbO$_2$ under the application of an external magnetic field. The crystal electric field-split $J = 7/2$ multiplet structure is determined, revealing a mi xed $|m_z>$ ground state doublet and is consistent with a recent report Ding et al. [1]. Our measurements further suggest signatures of exchange effects in the crystal field spectrum, manifested by a small splitting in energy of the transition into the first excited doublet. The field-dependence of the low-energy magnetic excitations across the transition from the quantum disordered ground state into the fluctuation-driven ordered regime is analyzed. Signs of a first-order phase transition into a noncollinear ordered state are revealed at the upper-field phase boundary of the ordered regime, and higher order magnon scattering, suggestive of strong magnon-magnon interactions, is resolved within the previously reported $up-up-down$ phase. Our results reveal a complex phase diagram of field-induced order and spin excitations within NaYbO$_2$ and demonstrate the dominant role of quantum fluctuations cross a broad range of fields within its interlayer frustrated triangular lattice.
145 - M. Swanson , J.T. Haraldsen , 2009
This work examines the critical anisotropy required for the local stability of the collinear ground states of a geometrically-frustrated triangular-lattice antiferromagnet (TLA). Using a Holstein-Primakoff expansion, we calculate the spin-wave freque ncies for the 1, 2, 3, 4, and 8-sublattice (SL) ground states of a TLA with up to third neighbor interactions. Local stability requires that all spin-wave frequencies are real and positive. The 2, 4, and 8-SL phases break up into several regions where the critical anisotropy is a different function of the exchange parameters. We find that the critical anisotropy is a continuous function everywhere except across the 2-SL/3-SL and 3-SL/4-SL phase boundaries, where the 3-SL phase has the higher critical anisotropy.
257 - Tao Xie , Jie Xing , S. E. Nikitin 2021
A layered triangular lattice with spin-1/2 ions is an ideal platform to explore highly entangled exotic states like quantum spin liquid (QSL). Here, we report a systematic in-field neutron scattering study on a perfect two-dimensional triangular-latt ice antiferromagnet, CsYbSe$_2$, a member of the large QSL candidate family rare-earth chalcogenides. The elastic neutron scattering measured down to 70 mK shows that there is a short-range 120$^{circ}$ magnetic order at zero field. In the field-induced ordered states, the spin-spin correlation lengths along the $c$ axis are relatively short, although the heat capacity results indicate long-range magnetic orders at 3 T $-$ 5 T. The inelastic neutron scattering spectra evolve from highly damped continuum-like excitations at zero field to relatively sharp spin wave modes at the plateau phase. Our extensive large-cluster density-matrix renormalization group calculations with a Heisenberg triangular-lattice nearest-neighbor antiferromagnetic model reproduce the essential features of the experimental spectra, including continuum-like excitations at zero field, series of sharp magnons at the plateau phase as well as two-magnon excitations at high energy. This work presents comprehensive experimental and theoretical overview of the unconventional field-induced spin dynamics in triangular-lattice Heisenberg antiferromagnet and thus provides valuable insight into quantum many-body phenomena.
Here, we report both ac and dc magnetization, thermodynamic and electric properties of hexagonal Ba$_3$NiIr$_2$O$_9$. The Ni$^{2+}$ (spin-1) forms layered triangular-lattice and interacts antiferromagnetically while Ir$^{5+}$ is believed to act as ma gnetic link between the layers. This complex magnetic interaction results in magnetic frustration leading to a spin-glass transition at $T_f$ $sim$ 8.5 K. The observed magnetic relaxation and aging effect also confirms the nonequilibrium ground state. The system further shows large exchange bias which is tunable with cooling field. Below the Curie-Weiss temperature $theta_{CW}$ ($sim$ -29 K), the magnetic specific heat $C_m$ displays a broad hump and at low temperature follows $C_m = gamma T^alpha$ dependence where both $gamma$ and $alpha$ show dependence on temperature and magnetic field. A sign change in magnetoresistace is observed which is due to an interplay among magnetic moment, field and spin-orbit coupling.
The spin wave excitations of the geometrically frustrated triangular lattice antiferromagnet (TLA) $rm CuFeO_2$ have been measured using high resolution inelastic neutron scattering. Antiferromagnetic interactions up to third nearest neighbors in the ab plane (J_1, J_2, J_3, with $J_2/J_1 approx 0.44$ and $J_3/J_1 approx 0.57$), as well as out-of-plane coupling (J_z, with $J_z/J_1 approx 0.29$) are required to describe the spin wave dispersion relations, indicating a three dimensional character of the magnetic interactions. Two energy dips in the spin wave dispersion occur at the incommensurate wavevectors associated with multiferroic phase, and can be interpreted as dynamic precursors to the magnetoelectric behavior in this system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا