ﻻ يوجد ملخص باللغة العربية
Industrial control systems are critical to the operation of industrial facilities, especially for critical infrastructures, such as refineries, power grids, and transportation systems. Similar to other information systems, a significant threat to industrial control systems is the attack from cyberspace---the offensive maneuvers launched by anonymous in the digital world that target computer-based assets with the goal of compromising a systems functions or probing for information. Owing to the importance of industrial control systems, and the possibly devastating consequences of being attacked, significant endeavors have been attempted to secure industrial control systems from cyberattacks. Among them are intrusion detection systems that serve as the first line of defense by monitoring and reporting potentially malicious activities. Classical machine-learning-based intrusion detection methods usually generate prediction models by learning modest-sized training samples all at once. Such approach is not always applicable to industrial control systems, as industrial control systems must process continuous control commands with limited computational resources in a nonstop way. To satisfy such requirements, we propose using online learning to learn prediction models from the controlling data stream. We introduce several state-of-the-art online learning algorithms categorically, and illustrate their efficacies on two typically used testbeds---power system and gas pipeline. Further, we explore a new cost-sensitive online learning algorithm to solve the class-imbalance problem that is pervasive in industrial intrusion detection systems. Our experimental results indicate that the proposed algorithm can achieve an overall improvement in the detection rate of cyberattacks in industrial control systems.
In this paper, we propose online algorithms for multiclass classification using partial labels. We propose two variants of Perceptron called Avg Perceptron and Max Perceptron to deal with the partial labeled data. We also propose Avg Pegasos and Max
We provide a new adaptive method for online convex optimization, MetaGrad, that is robust to general convex losses but achieves faster rates for a broad class of special functions, including exp-concave and strongly convex functions, but also various
We study the problem of controlling linear time-invariant systems with known noisy dynamics and adversarially chosen quadratic losses. We present the first efficient online learning algorithms in this setting that guarantee $O(sqrt{T})$ regret under
Deep neural networks are considered to be state of the art models in many offline machine learning tasks. However, their performance and generalization abilities in online learning tasks are much less understood. Therefore, we focus on online learnin
In this paper we study the convergence of online gradient descent algorithms in reproducing kernel Hilbert spaces (RKHSs) without regularization. We establish a sufficient condition and a necessary condition for the convergence of excess generalizati