ﻻ يوجد ملخص باللغة العربية
While two-terminal HfOX (x<2) memristor devices have been studied for ion transport and current evolution, there have been limited reports on the effect of the long-range thermal environment on their performance. In this work, amorphous-HfOX based memristor devices on two different substrates, thin SiO2(280 nm)/Si and glass, with different thermal conductivities in the range from 1.2 to 138 W/m-K were fabricated. Devices on glass substrates exhibit lower reset voltage, wider memory window and, in turn, a higher performance window. In addition, the devices on glass show better endurance than the devices on the SiO2/Si substrate. These devices also show non-volatile multi-level resistances at relatively low operating voltages which is critical for neuromorphic computing applications. A Multiphysics COMSOL computational model is presented that describes the transport of heat, ions and electrons in these structures. The combined experimental and COMSOL simulation results indicate that the long-range thermal environment can have a significant impact on the operation of HfOx-based memristors and that substrates with low thermal conductivity can enhance switching performance.
BiFeO3 thin films have been deposited on Pt/sapphire and Pt/Ti/SiO2/Si substrates with pulsed laser deposition using the same growth conditions, respectively. Au was sputtered as the top electrode. The microscopic structure of the thin film varies by
We studied the resistive memory switching in pulsed laser deposited amorphous LaHoO3 (LHO) thin films for non-volatile resistive random access memory (RRAM) applications. Nonpolar resistive switching (RS) was achieved in PtLHOPt memory cells with all
It has been suggested that all resistive-switching memory cells are memristors. The latter are hypothetical, ideal devices whose resistance, as originally formulated, depends only on the net charge that traverses them. Recently, an unambiguous test h
We report on resistive switching of memristive electrochemical metallization devices using 3D kinetic Monte Carlo simulations describing the transport of ions through a solid state electrolyte of an Ag/TiO$_{text{x}}$/Pt thin layer system. The ion tr
Films produced by assembling bare gold clusters well beyond the electrical percolation threshold show a resistive switching behavior whose investigation has started only recently. Here we address the challenge to charaterize the resistance of a nanog