ﻻ يوجد ملخص باللغة العربية
We studied the resistive memory switching in pulsed laser deposited amorphous LaHoO3 (LHO) thin films for non-volatile resistive random access memory (RRAM) applications. Nonpolar resistive switching (RS) was achieved in PtLHOPt memory cells with all four possible RS modes ( positive unipolar, positive bipolar, negative unipolar, and negative bipolar) having high RON and ROFF ratios (in the range of 104 to 105) and non-overlapping switching voltages (set voltage, VON 3.6 to 4.2 V and reset voltage, VOFF 1.3 to 1.6 V) with a small variation of about 5 to 8 percent. X ray photoelectron spectroscopic studies together with temperature dependent switching characteristics revealed the formation of metallic holmium (Ho) and oxygen vacancies (VO) constituted conductive nanofilaments (CNFs) in the low resistance state (LRS). Detailed analysis of current versus voltage characteristics further corroborated the formation of CNFs based on metal like (Ohmic) conduction in LRS. Simmons Schottky emission was found to be the dominant charge transport mechanism in the high resistance state.
BiFeO3 thin films have been deposited on Pt/sapphire and Pt/Ti/SiO2/Si substrates with pulsed laser deposition using the same growth conditions, respectively. Au was sputtered as the top electrode. The microscopic structure of the thin film varies by
Films produced by assembling bare gold clusters well beyond the electrical percolation threshold show a resistive switching behavior whose investigation has started only recently. Here we address the challenge to charaterize the resistance of a nanog
The increasing demand for high-density data storage leads to an increasing interest in novel memory concepts with high scalability and the opportunity of storing multiple bits in one cell. A promising candidate is the redox-based resistive switch rep
Electrical characteristics of a Co/TiO_x/Co resistive memory device, fabricated by two different methods are reported. In addition to crystalline TiO_2 layers fabricated via conventional atomic layer deposition (ALD), an alternative method has been e
The development prospects of memristive elements for non-volatile memory with use of the metal-dielectric-metal sandwich structures with a thin oxide layer are due to the possibility of reliable forming the sustained functional states with quantized