ترغب بنشر مسار تعليمي؟ اضغط هنا

Photo-processing of astro-PAHs

138   0   0.0 ( 0 )
 نشر من قبل Christine Joblin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Christine Joblin




اسأل ChatGPT حول البحث

Polycyclic aromatic hydrocarbons (PAHs) are key species in astrophysical environments in which vacuum ultraviolet (VUV) photons are present, such as star-forming regions. The interaction with these VUV photons governs the physical and chemical evolution of PAHs. Models show that only large species can survive. However, the actual molecular properties of large PAHs are poorly characterized and the ones included in models are only an extrapolation of the properties of small and medium-sized species. We discuss here experiments performed on trapped ions including some at the SOLEIL VUV beam line DESIRS. We focus on the case of the large dicoronylene cation, C48H20+ , and compare its behavior under VUV processing with that of smaller species. We suggest that C2H2 is not a relevant channel in the fragmentation of large PAHs. Ionization is found to largely dominate fragmentation. In addition, we report evidence for a hydrogen dissociation channel through excited electronic states. Although this channel is minor, it is already effective below 13.6 eV and can significantly influence the stability of astro-PAHs. We emphasize that the competition between ionization and dissociation in large PAHs should be further evaluated for their use in astrophysical models.

قيم البحث

اقرأ أيضاً

We report on the absorption spectra of the polycyclic aromatic hydrocarbon (PAH) molecules anthracene, phenanthrene, and pyrene carrying either an ethynyl (-C2H) or a butadiynyl (-C4H) group. Measurements were carried out in the mid infrared at room temperature on grains embedded in CsI pellets and in the near ultraviolet at cryogenic temperature on molecules isolated in Ne matrices. The infrared measurements show that interstellar populations of polyynyl-substituted PAHs would give rise to collective features in the same way non-substituted PAHs give rise to the aromatic infrared bands. The main features characteristic of the substituted molecules correspond to the acetylenic CH stretching mode near 3.05 mum and to the almost isoenergetic acetylenic CCH in- and out-of-plane bending modes near 15.9 mum. Sub-populations defined by the length of the polyynyl side group cause collective features which correspond to the various acetylenic CC stretching modes. The ultraviolet spectra reveal that the addition of an ethynyl group to a non-substituted PAH molecule results in all its electronic transitions being redshifted. Due to fast internal energy conversion, the bands at shorter wavelengths are significantly broadened. Those at longer wavelengths are only barely affected in this respect. As a consequence, their relative peak absorption increases. The substitution with the longer butadiynyl chain causes the same effects with a larger magnitude, resulting in the spectra to show a prominent if not dominating pi-pi* transition at long wavelength. After discussing the relevance of polyynyl-substituted PAHs to astrophysics, we conclude that this class of highly conjugated, unsaturated molecules are valid candidates for the carriers of the diffuse interstellar bands.
Interstellar polycyclic aromatic hydrocarbons (PAHs) are expected to be strongly processed by vacuum ultraviolet photons. Here, we report experimental studies on the ionization and fragmentation of coronene (C24H12), ovalene (C32H14) and hexa-peri-he xabenzocoronene (HBC; C42H18) cations by exposure to synchrotron radiation in the range of 8--40 eV. The results show that for small PAH cations such as coronene, fragmentation (H-loss) is more important than ionization. However, as the size increases, ionization becomes more and more important and for the HBC cation, ionization dominates. These results are discussed and it is concluded that, for large PAHs, fragmentation only becomes important when the photon energy has reached the highest ionization potential accessible. This implies that PAHs are even more photo-stable than previously thought. The implications of this experimental study for the photo-chemical evolution of PAHs in the interstellar medium are briefly discussed.
149 - J. Pety , D. Teyssier (3 2005
We present maps at high spatial and spectral resolution in emission lines of C2H, c-C3H2, C4H, 12CO and C18O of the edge of the Horsehead nebula obtained with the Plateau de Bure Interferometer (PdBI). The edge of the Horsehead nebula is a one-dimens ional Photo--Dissociation Region (PDR) viewed almost edge-on. All hydrocarbons are detected at high signal--to--noise ratio in the PDR where intense emission is seen both in the H2 ro-vibrational lines and in the PAH mid--infrared bands. C18O peaks farther away from the cloud edge. Our observations demonstrate that C2H, cC3H2 and C4H are present in UV--irradiated molecular gas, with abundances nearly as high as in dense, well shielded molecular cores. PDR models i) need a large density gradient at the PDR edge to correctly reproduce the offset between the hydrocarbons and H2 peaks and ii) fail to reproduce the hydrocarbon abundances. We propose that a new formation path of carbon chains, in addition to gas phase chemistry, should be considered in PDRs: because of intense UV--irradiation, large aromatic molecules and small carbon grains may fragment and feed the interstellar medium with small carbon clusters and molecules in significant amount.
The high interstellar abundances of polycyclic aromatic hydrocarbons (PAHs) and their size distribution are the result of complex chemical processes implying dust, UV radiation, and the main gaseous components (H, C+, and O). These processes must exp lain the high abundance of relatively small PAHs in the diffuse interstellar medium (ISM) and imply the continuous formation of some PAHs that are small enough (number of carbon atoms NC <~ 35-50) to be completely dehydrogenated by interstellar UV radiation. The carbon clusters Cn thus formed are constantly exposed to the absorption of ~10-13.6 eV UV photons, allowing isomerization and favoring the formation of the most stable isomers. They might tend to form irregular carbon cages. The frequent accretion of interstellar C+ ions could favor further cage isomerization, as is known in the laboratory for C60, possibly yielding most stable fullerenes, such as C40, C44, and C50. These fullerenes are expected to be very stable in the diffuse ISM because C2 ejection is not possible by single UV photon absorption, but could need rare two-photon absorption. It is possible that at least one of these fullerenes or its cation is as abundant as C60 or C60+ in the diffuse ISM, although this abundance is limited by the lack of observed matching features in observed mid-infrared spectra. B3LYP calculations of the visible spectrum for a number of fullerene isomers with 40 <~ NC <~ 50 show that they generally have a few spectral bands in the visible range, with f-values in the range of a few 10-2. This could make such fullerenes interesting candidates for the carriers of some diffuse interstellar bands.
Here we propose a mechanism by which spin polarization can be generated dynamically in chiral molecular systems undergoing photo-induced electron transfer. The proposed mechanism explains how spin polarization emerges in systems where charge transpor t is dominated by incoherent hopping, mediated by spin orbit and electronic exchange couplings through an intermediate charge transfer state. We derive a simple expression for the spin polarization that predicts a non-monotonic temperature dependence consistent with recent experiments. We validate this theory using approximate quantum master equations and the numerically exact hierarchical equations of motion. The proposed mechanism of chirality induced spin selectivity should apply to many chiral systems, and the ideas presented here have implications for the study of spin transport at temperatures relevant to biology, and provide simple principles for the molecular control of spins in fluctuating environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا