ترغب بنشر مسار تعليمي؟ اضغط هنا

Are PAHs precursors of small hydrocarbons in Photo--Dissociation Regions? The Horsehead case

150   0   0.0 ( 0 )
 نشر من قبل Jerome Pety
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present maps at high spatial and spectral resolution in emission lines of C2H, c-C3H2, C4H, 12CO and C18O of the edge of the Horsehead nebula obtained with the Plateau de Bure Interferometer (PdBI). The edge of the Horsehead nebula is a one-dimensional Photo--Dissociation Region (PDR) viewed almost edge-on. All hydrocarbons are detected at high signal--to--noise ratio in the PDR where intense emission is seen both in the H2 ro-vibrational lines and in the PAH mid--infrared bands. C18O peaks farther away from the cloud edge. Our observations demonstrate that C2H, cC3H2 and C4H are present in UV--irradiated molecular gas, with abundances nearly as high as in dense, well shielded molecular cores. PDR models i) need a large density gradient at the PDR edge to correctly reproduce the offset between the hydrocarbons and H2 peaks and ii) fail to reproduce the hydrocarbon abundances. We propose that a new formation path of carbon chains, in addition to gas phase chemistry, should be considered in PDRs: because of intense UV--irradiation, large aromatic molecules and small carbon grains may fragment and feed the interstellar medium with small carbon clusters and molecules in significant amount.

قيم البحث

اقرأ أيضاً

90 - J.H. Knapen 2006
Context At least a fraction of the atomic hydrogen in spiral galaxies is suspected to be the result of molecular hydrogen which has been dissociated by radiation from massive stars. Aims In this paper, we extend our earlier set of data from a small region of the Western spiral arm of M81 with CO observations in order to study the interplay between the radiation field and the molecular and atomic hydrogen. Methods We report CO(1-0) observations with the Nobeyama 45 m dish and the Owens Valley interferometer array of selected regions in the Western spiral arm of M81. Results From our Nobeyama data, we detect CO(1-0) emission at several locations, coinciding spatially with HI features near a far-UV source. The levels and widths of the detected CO profiles are consistent with the CO(1-0) emission that can be expected from several large photo-dissociation regions with typical sizes of some 50x150 pc located within our telescope beam. We do not detect emission at other pointings, even though several of those are near far-UV sources and accompanied by bright HI. This non-detection is likely a consequence of the marginal area filling factor of photo-dissociation regions in our observations. We detect no emission in our Owens Valley data, consistent with the low intensity of the CO emission detected in that field by the Nobeyama dish. Conclusions We explain the lack of CO(1-0) emission at positions farther from far-UV sources as a consequence of insufficient heating and excitation of the molecular gas at these positions, rather than as an absence of molecular hydrogen.
We have obtained new STIS/HST spectra to search for structure in the ultraviolet interstellar extinction curve, with particular emphasis on a search for absorption features produced by polycyclic aromatic hydrocarbons (PAHs). The presence of these mo lecules in the interstellar medium has been postulated to explain the infrared emission features seen in the 3-13 $mu$m spectra of numerous sources. UV spectra are uniquely capable of identifying specific PAH molecules. We obtained high S/N UV spectra of stars which are significantly more reddened than those observed in previous studies. These data put limits on the role of small (30-50 carbon atoms) PAHs in UV extinction and call for further observations to probe the role of larger PAHs. PAHs are of importance because of their ubiquity and high abundance inferred from the infrared data and also because they may link the molecular and dust phases of the interstellar medium. A presence or absence of ultraviolet absorption bands due to PAHs could be a definitive test of this hypothesis. We should be able to detect a 20 AA wide feature down to a 3$sigma$ limit of $sim$0.02 A$_V$. No such absorption features are seen other than the well-known 2175 AA bump.
We study whether polycyclic aromatic hydrocarbons (PAHs) can be a weighty source of small hydrocarbons in photo-dissociation regions (PDRs). We modeled the evolution of 20 specific PAH molecules in terms of dehydrogenation and destruction of the carb on skeleton under the physical conditions of two well-studied PDRs, the Orion Bar and the Horsehead nebula which represent prototypical examples of PDRs irradiated by high and low ultraviolet radiation field. PAHs are described as microcanonical systems. The acetylene molecule is considered as the main carbonaceous fragment of the PAH dissociation as it follows from laboratory experiments and theory. We estimated the rates of acetylene production in gas phase chemical reactions and compared them with the rates of the acetylene production through the PAH dissociation. It is found that the latter rates can be higher than the former rates in the Orion Bar at $A_{rm V}<1$ and also at $A_{rm V}>3.5$. In the Horsehead nebula, the chemical reactions provide more acetylene than the PAH dissociation. The produced acetylene participate in the reactions of the formation of small hydrocarbons (C$_2$H, C$_3$H, C$_3$H$^{+}$, C$_3$H$_2$, C$_4$H). Acetylene production via the PAH destruction may increase the abundances of small hydrocarbons produced in gas phase chemical reactions in the Orion Bar only at $A_{rm V}>3.5$. In the Horsehead nebula, the contribution of PAHs to the abundances of the small hydrocarbons is negligible. We conclude that the PAHs are not a major source of small hydrocarbons in both PDRs except some locations in the Orion Bar.
137 - Christine Joblin 2019
Polycyclic aromatic hydrocarbons (PAHs) are key species in astrophysical environments in which vacuum ultraviolet (VUV) photons are present, such as star-forming regions. The interaction with these VUV photons governs the physical and chemical evolut ion of PAHs. Models show that only large species can survive. However, the actual molecular properties of large PAHs are poorly characterized and the ones included in models are only an extrapolation of the properties of small and medium-sized species. We discuss here experiments performed on trapped ions including some at the SOLEIL VUV beam line DESIRS. We focus on the case of the large dicoronylene cation, C48H20+ , and compare its behavior under VUV processing with that of smaller species. We suggest that C2H2 is not a relevant channel in the fragmentation of large PAHs. Ionization is found to largely dominate fragmentation. In addition, we report evidence for a hydrogen dissociation channel through excited electronic states. Although this channel is minor, it is already effective below 13.6 eV and can significantly influence the stability of astro-PAHs. We emphasize that the competition between ionization and dissociation in large PAHs should be further evaluated for their use in astrophysical models.
While powerful techniques exist to accurately account for anharmonicity in vibrational molecular spectroscopy, they are computationally very expensive and cannot be routinely employed for large species and/or at non- zero vibrational temperatures. Mo tivated by the study of Polycyclic Aromatic Hydrocarbon (PAH) emission in space, we developed a new code, which takes into account all modes and can describe all IR transitions including bands becoming active due to resonances as well as overtones, combination and difference bands. In this article, we describe the methodology that was implemented and discuss how the main difficulties were overcome, so as to keep the problem tractable. Benchmarking with high-level calculations was performed on a small molecule. We carried out specific convergence tests on two prototypical PAHs, pyrene (C$_{16}$H$_{10}$) and coronene (C$_{24}$H$_{12}$), aiming at optimising tunable parameters to achieve both acceptable accuracy and computational costs for this class of molecules. We then report the results obtained at 0 K for pyrene and coronene, comparing the calculated spectra with available experimental data. The theoretical band positions were found to be significantly improved compared to harmonic Density Functional Theory (DFT) calculations. The band intensities are in reasonable agreement with experiments, the main limitation being the accuracy of the underlying calculations of the quartic force field. This is a first step towards calculating moderately high-temperature spectra of PAHs and other similarly rigid molecules using Monte Carlo sampling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا