ترغب بنشر مسار تعليمي؟ اضغط هنا

Gate-tunable h/e-period magnetoresistance oscillations in Bi2O2Se nanowires

103   0   0.0 ( 0 )
 نشر من قبل Fanming Qu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the successful synthesis and low-temperature electron transport investigations of a new form of material - Bi2O2Se semiconducting nanowires. Gate-tunable 0- and $pi$-h/e (h is the Planck constant and e the elementary charge) periodic resistance oscillations in longitudinal magnetic field were observed unexpectedly, demonstrating novel quasi-ballistic, phase-coherent surface states in Bi2O2Se nanowires. By reaching a very good agreement between the calculated density of states and the experimental data, we clarified the mechanism to be the one dimensional subbands formed along the circumference of the nanowire rather than the usually considered Aharonov-Bohm interference. A qualitative physical picture based on downward band bending associated with the complex band structure is proposed to describe the formation of the surface states.

قيم البحث

اقرأ أيضاً

Three-dimensional topological insulator (3D TI) nanowires display various interesting magnetotransport properties that can be attributed to their spin-momentum-locked surface states such as quasiballistic transport and Aharonov-Bohm oscillations. Her e, we focus on the transport properties of a 3D TI nanowire with a gated section that forms an electronic Fabry-Perot (FP) interferometer that can be tuned to act as a surface-state filter or energy barrier. By tuning the carrier density and length of the gated section of the wire, the interference pattern can be controlled and the nanowire can become fully transparent for certain topological surface-state input modes while completely filtering out others. We also consider the interplay of FP interference with an external magnetic field, with which Klein tunneling can be induced, and transverse asymmetry of the gated section, e.g., due to a top-gated structure, which displays an interesting analogy with Rashba nanowires. Due to its rich conductance phenomenology, we propose a 3D TI nanowire with gated section as an ideal setup for a detailed transport-based characterization of 3D TI nanowire surface states near the Dirac point, which could be useful towards realizing 3D TI nanowire-based topological superconductivity and Majorana bound states.
Magnetism is a prototypical phenomenon of quantum collective state, and has found ubiquitous applications in semiconductor technologies such as dynamic random access memory (DRAM). In conventional materials, it typically arises from the strong exchan ge interaction among the magnetic moments of d- or f-shell electrons. Magnetism, however, can also emerge in perfect lattices from non-magnetic elements. For instance, flat band systems with high density of states (DOS) may develop spontaneous magnetic ordering, as exemplified by the Stoner criterion. Here we report tunable magnetism in rhombohedral-stacked few-layer graphene (r-FLG). At small but finite doping (n~10^11 cm-2), we observe prominent conductance hysteresis and giant magnetoconductance that exceeds 1000% as a function of magnetic fields. Both phenomena are tunable by density and temperature, and disappears for n>10^12 cm-2 or T>5K. These results are confirmed by first principles calculations, which indicate the formation of a half-metallic state in doped r-FLG, in which the magnetization is tunable by electric field. Our combined experimental and theoretical work demonstrate that magnetism and spin polarization, arising from the strong electronic interactions in flat bands, emerge in a system composed entirely of carbon atoms. The electric field tunability of magnetism provides promise for spintronics and low energy device engineering.
79 - F. Schopfer , F. Mallet , C. Naud 2004
We report on magnetotransport measurements performed on a large metallic two-dimensional $mathcal{T}_{3}$ network. Superimposed on the conventional Altshuler-Aronov-Spivak (AAS) oscillations of period $h/2e$, we observe clear $h/e$ oscillations in ma gnetic fields up to $8 T$. Different interpretations of this phenomenon are proposed.
Diamond has attracted attention as a next-generation semiconductor because of its various exceptional properties such as a wide bandgap and high breakdown electric field. Diamond field effect transistors, for example, have been extensively investigat ed for high-power and high-frequency electronic applications. The quality of their charge transport (i.e., mobility), however, has been limited due to charged impurities near the diamond surface. Here, we fabricate diamond field effect transistors by using a monocrystalline hexagonal boron nitride as a gate dielectric. The resulting high mobility of charge carriers allows us to observe quantum oscillations in both the longitudinal and Hall resistivities. The oscillations provide important information on the fundamental properties of the charge carriers, such as effective mass, lifetime, and dimensionality. Our results indicate the presence of a high-quality two-dimensional hole gas at the diamond surface and thus pave the way for studies of quantum transport in diamond and the development of low-loss and high-speed devices.
We report an efficient technique to induce gate-tunable two-dimensional superlattices in graphene by the combined action of a back gate and a few-layer graphene patterned bottom gate complementary to existing methods. The patterned gates in our appro ach can be easily fabricated and implemented in van der Waals stacking procedures allowing flexible use of superlattices with arbitrary geometry. In transport measurements on a superlattice with lattice constant $a=40$ nm well pronounced satellite Dirac points and signatures of the Hofstadter butterfly including a non-monotonic quantum Hall response are observed. Furthermore, the experimental results are accurately reproduced in transport simulations and show good agreement with features in the calculated band structure. Overall, we present a comprehensive picture of graphene-based superlattices, featuring a broad range of miniband effects, both in experiment and in theoretical modeling. The presented technique is suitable for studying more advanced geometries which are not accessible by other methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا