ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of $h/e$ conductance oscillations in disordered metallic $T_3$ network

80   0   0.0 ( 0 )
 نشر من قبل Laurent Saminadayar
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on magnetotransport measurements performed on a large metallic two-dimensional $mathcal{T}_{3}$ network. Superimposed on the conventional Altshuler-Aronov-Spivak (AAS) oscillations of period $h/2e$, we observe clear $h/e$ oscillations in magnetic fields up to $8 T$. Different interpretations of this phenomenon are proposed.

قيم البحث

اقرأ أيضاً

We report on the successful synthesis and low-temperature electron transport investigations of a new form of material - Bi2O2Se semiconducting nanowires. Gate-tunable 0- and $pi$-h/e (h is the Planck constant and e the elementary charge) periodic res istance oscillations in longitudinal magnetic field were observed unexpectedly, demonstrating novel quasi-ballistic, phase-coherent surface states in Bi2O2Se nanowires. By reaching a very good agreement between the calculated density of states and the experimental data, we clarified the mechanism to be the one dimensional subbands formed along the circumference of the nanowire rather than the usually considered Aharonov-Bohm interference. A qualitative physical picture based on downward band bending associated with the complex band structure is proposed to describe the formation of the surface states.
We study the conductance of disordered graphene superlattices with short-range structural correlations. The system consists of electron- and hole-doped graphenes of various thicknesses, which fluctuate randomly around their mean value. The effect of the randomness on the probability of transmission through the system of various sizes is studied. We show that in a disordered superlattice the quasiparticle that approaches the barrier interface almost perpendicularly transmits through the system. The conductivity of the finite-size system is computed and shown that the conductance vanishes when the sample size becomes very large, whereas for some specific structures the conductance tends to a nonzero value in the thermodynamics limit.
71 - Wei Ren , C. T. Chan , T. H. Cho 2008
We report a first principles analysis of electronic transport characteristics for (n,n) carbon nanotube bundles. When n is not a multiple of 3, inter-tube coupling causes universal conductance suppression near Fermi level regardless of the rotational arrangement of individual tubes. However, when n is a multiple of 3, the bundles exhibit a diversified conductance dependence on the orientation details of the constituent tubes. The total energy of the bundle is also sensitive to the orientation arrangement only when n is a multiple of 3. All the transport properties and band structures can be well understood from the symmetry consideration of whether the rotational symmetry of the individual tubes is commensurate with that of the bundle.
The past few years have witnessed increased attention to the quest for Majorana-like excitations in the condensed matter community. As a promising candidate in this race, the one-dimensional chiral Majorana edge mode (CMEM) in topological insulator-s uperconductor heterostructures has gathered renewed interests during recent months after an experimental breakthrough. In this paper, we study the quantum transport of topological insulator-superconductor hybrid devices subject to light-matter interaction or general time-periodic modulation. We report half-integer quantized conductance plateaus at $frac{1}{2}frac{e^2}{h}$ and $frac{3}{2}frac{e^2}{h}$ upon applying the so-called sum rule in the theory of quantum transport in Floquet topological matter. In particular, in a photoinduced topological superconductor sandwiched between two Floquet Chern insulators, it is found that for each Floquet sideband, the CMEM admits equal probability for normal transmission and local Andreev reflection over a wide range of parameter regimes, yielding half-integer quantized plateaus that resist static and time-periodic disorder. The $frac{3}{2}frac{e^2}{h}$ plateau has not yet been computationally or experimentally observed in any other superconducting system, and indicates the possibility to simultaneously create and manipulate multiple pairs of CMEMs by light. The robust half-quantized conductance plateaus, due to CMEMs at quasienergies zero or half the driving frequency, are both fascinating and subtle because they only emerge after a summation over contributions from all Floquet sidebands. Such a distinctive transport signature can thus serve as a hallmark of photoinduced CMEMs in topological insulator-superconductor junctions.
Results of an experimental study of palladium nanojunctions in hydrogen environment are presented. Two new hydrogen-related atomic configurations are found, which have a conductances of ~0.5 and ~1 quantum unit (2e^2/h). Phonon spectrum measurements demonstrate that these configurations are situated between electrodes containing dissolved hydrogen. The crucial differences compared to the previously studied Pt-H_2 junctions, and the possible microscopic realizations of the new configurations in palladium-hydrogen atomic-sized contacts are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا