ﻻ يوجد ملخص باللغة العربية
The basic features of multi-band superconductivity and its implications are derived. In particular, it is shown that enhancements of the superconducting transition temperature take place due to interband interactions. In addition, isotope effects differ substantially from the typical BCS scheme as soon as polaronic coupling effects are present. Special cases of the model are polaronic coupling in one band as realized e.g., in cuprates, coexistence of a flat band and a steep band like in MgB2, crossovers between extreme cases. The advantages of the multiband approach as compared to the single band BCS model are elucidated and its rather frequent realization in actual systems discussed
One novel arena for designing superconductors with high $T_C$ is the flat-band systems. A basic idea is that flat bands, arising from quantum mechanical interference, give unique opportunities for enhancing $T_C$ with (i) many pair-scattering channel
The discovery of superconductivity in twisted bilayer graphene has triggered a resurgence of interest in flat-band superconductivity. Here, we investigate the square-octagon lattice, which also exhibits two perfectly flat bands when next-nearest neig
In flat bands, superconductivity can lead to surprising transport effects. The superfluid mobility, in the form of the superfluid weight $D_s$, does not draw from the curvature of the band but has a purely band-geometric origin. In a mean-field descr
The two-dimensional electron gas at the LaTiO3/SrTiO3 or LaAlO3/SrTiO3 oxide interfaces becomes superconducting when the carrier density is tuned by gating. The measured resistance and superfluid density reveal an inhomogeneous superconductivity resu
It is known that a system which exhibits a half filled lowest flat band and the localized one-particle Wannier states on the flat band satisfy the connectivity conditions, is always ferromagnetic. Without the connectivity conditions on the flat band,