ترغب بنشر مسار تعليمي؟ اضغط هنا

Fragile topology and flat-band superconductivity in the strong-coupling regime

114   0   0.0 ( 0 )
 نشر من قبل Valerio Peri
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In flat bands, superconductivity can lead to surprising transport effects. The superfluid mobility, in the form of the superfluid weight $D_s$, does not draw from the curvature of the band but has a purely band-geometric origin. In a mean-field description, a non-zero Chern number or fragile topology sets a lower bound for $D_s$, which, via the Berezinskii-Kosterlitz-Thouless mechanism, might explain the relatively high superconducting transition temperature measured in magic-angle twisted bilayer graphene (MATBG). For fragile topology, relevant for the bilayer system, the fate of this bound for finite temperature and beyond the mean-field approximation remained, however, unclear. Here, we use numerically exact Monte Carlo simulations to study an attractive Hubbard model in flat bands with topological properties akin to those of MATBG. We find a superconducting phase transition with a critical temperature that scales linearly with the interaction strength. We then investigate the robustness of the superconducting state to the addition of trivial bands that may or may not trivialize the fragile topology. Our results substantiate the validity of the topological bound beyond the mean-field regime and further stress the importance of fragile topology for flat-band superconductivity.



قيم البحث

اقرأ أيضاً

358 - Xiaoming Wang , Tao Zhou 2021
We study the topological properties of the nodal-line semimetal superconductor. The single band inversion and the double band inversion coexist in an $s$-wave nodal-line semimetal superconductor. In the single/double band inversion region, the system is in a stable/fragile topological state. The two topological invariants describing these two topological states are coupled to each other, leading to the coupled edge states. The stable topological state is indexed by ${mathrm Z}$(d=1), while the fragile topological state is characterized to be ${mathrm Z}otimes {mathrm Z}(d=1)$. In addition, the $s$-wave nodal-line semimetal superconductor has a nontrivial ${mathrm Z_{4}=2}$ topological invariant, indicating that it is a inversion symmetry protected second order topological crystalline superconductor. While the $p$-wave nodal-line semimetal belongs to a pure fragile topological superconductor due to the double band inversion. The vortex bound states and the surface impurity effects are studied and they can be used to distinguish the different pairing states and identify the fragile topology of the system. Remarkably, we propose that vortex line in the nodal-line semimetal superconductor is a one dimensional fragile topological state protected by the spatial symmetry.
345 - P. P. Kong , F. Sun , L.Y. Xing 2014
Recently, A2B3 type strong spin orbital coupling compounds such as Bi2Te3, Bi2Se3 and Sb2Te3 were theoretically predicated to be topological insulators and demonstrated through experimental efforts. The counterpart compound Sb2Se3 on the other hand w as found to be topological trivial, but further theoretical studies indicated that the pressure might induce Sb2Se3 into a topological nontrivial state. Here, we report on the discovery of superconductivity in Sb2Se3 single crystal induced via pressure. Our experiments indicated that Sb2Se3 became superconductive at high pressures above 10 GPa proceeded by a pressure induced insulator to metal like transition at ~3 GPa which should be related to the topological quantum transition. The superconducting transition temperature (TC) increased to around 8.0 K with pressure up to 40 GPa while it keeps ambient structure. High pressure Raman revealed that new modes appeared around 10 GPa and 20 GPa, respectively, which correspond to occurrence of superconductivity and to the change of TC slop as the function of high pressure in conjunction with the evolutions of structural parameters at high pressures.
In the presence of Rashba spin-orbit coupling, magnetic field can drive a proximitized nanowire into a topological superconducting phase. We study transport properties of such nanowires in the Coulomb blockade regime. The associated with the topologi cal superconductivity Majorana modes significantly modify transport and lead to single-electron coherent transmission through the nanowire - a non-local signature of topological superconductivity. In this work, we focus on the case of strong hybridization of the Majorana modes with the normal leads. The induced by hybridization broadening of the Majorana zero-energy states competes with the charging energy, leading to a considerable modification of the Coulomb blockade in a nanowire contacted by two normal leads. We evaluate the two-terminal conductance as a function of the gate voltage, junctions transmission coefficients, the geometric capacitance of and the induced superconducting gap in the nanowire.
124 - Aiyun Luo , Zhida Song , Gang Xu 2021
By means of the first-principles calculations and magnetic topological quantum chemistry, we demonstrate that the low energy physics in the checkerboard antiferromagnetic (AFM) monolayer FeSe, very close to an AFM topological insulator that hosts rob ust edge states, can be well captured by a double-degenerate fragile topologically flat band just below the Fermi level. The Wilson loop calculations identify that such fragile topology is protected by the $S_{4z}$ symmetry, which gives rise to an AFM higher-order topological insulator that support the bound state with fractional charge $e/2$ at the sample corner. This is the first reported $S_{4z}$-protected fragile topological material, which provides a new platform to study the intriguing properties of magnetic fragile topological electronic states. Previous observations of the edge states and bound states in checkerboard AFM monolayer FeSe can also be well understood in our work.
Coupling between $sigma$-bonding electrons and phonons is generally very strong. To metallize $sigma$-electrons provides a promising route to hunt for new high-T$_c$ superconductors. Based on this picture and first-principles density functional calcu lation with Wannier interpolation for electronic structure and lattice dynamics, we predict that trilayer film LiB$_2$C$_2$ is a good candidate to realize this kind of high-T$_c$ superconductivity. By solving the anisotropic Eliashberg equations, we find that free-standing trilayer LiB$_2$C$_2$ is a phonon-mediated superconductor with T$_c$ exceeding the liquid-nitrogen temperature at ambient pressure. The transition temperature can be further raised to 125 K by applying a biaxial tensile strain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا