ﻻ يوجد ملخص باللغة العربية
In recent numerical and analytical studies, Rabbani {it et al.} [Phys. Rev. E {bf 99}, 062302 (2019)] observed the first-order phase transition in social triads dynamics on complete graph with $N=50$ nodes. With Metropolis algorithm they found critical temperature on such graph equal to 26.2. In this comment we extend their main observation in more compact and natural manner. In contrast to the commented paper we estimate critical temperature $T^c$ for complete graph not only with $N=50$ nodes but for any size of the system. We have derived formula for critical temperature $T^c=(N-2)/a^c$, where $N$ is the number of graph nodes and $a^capprox 1.71649$ comes from combination of heat-bath and mean-field approximation. Our computer simulation based on heat-bath algorithm confirm our analytical results and recover critical temperature $T^c$ obtained earlier also for $N=50$ and for systems with other sizes. Additionally, we have identified---not observed in commented paper---phase of the system, where the mean value of links is zero but the system energy is minimal since the network contains only balanced triangles with all positive links or with two negative links. Such a phase corresponds to dividing the set of agents into two coexisting hostile groups and it exists only in low temperatures.
In a recent work [R. Shojaei et al, Physical Review E 100, 022303 (2019)] the Authors calculate numerically the critical temperature $T_c$ of the balanced-imbalanced phase transition in a fully connected graph. According to their findings, $T_c$ decr
In this work we study the coupled dynamics of social balance and opinion formation. We propose a model where agents form opinions under bounded confidence, but only considering the opinions of their friends. The signs of social ties -friendships and
Mean-field analysis is an important tool for understanding dynamics on complex networks. However, surprisingly little attention has been paid to the question of whether mean-field predictions are accurate, and this is particularly true for real-world
When the interactions of agents on a network are assumed to follow the Deffuant opinion dynamics model, the outcomes are known to depend on the structure of the underlying network. This behavior cannot be captured by existing mean-field approximation
We present a detailed investigation of the behavior of the nonlinear q-voter model for opinion dynamics. At the mean-field level we derive analytically, for any value of the number q of agents involved in the elementary update, the phase diagram, the