ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Model Robustness Using Causal Knowledge

130   0   0.0 ( 0 )
 نشر من قبل Trent Kyono
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For decades, researchers in fields, such as the natural and social sciences, have been verifying causal relationships and investigating hypotheses that are now well-established or understood as truth. These causal mechanisms are properties of the natural world, and thus are invariant conditions regardless of the collection domain or environment. We show in this paper how prior knowledge in the form of a causal graph can be utilized to guide model selection, i.e., to identify from a set of trained networks the models that are the most robust and invariant to unseen domains. Our method incorporates prior knowledge (which can be incomplete) as a Structural Causal Model (SCM) and calculates a score based on the likelihood of the SCM given the target predictions of a candidate model and the provided input variables. We show on both publicly available and synthetic datasets that our method is able to identify more robust models in terms of generalizability to unseen out-of-distribution test examples and domains where covariates have shifted.

قيم البحث

اقرأ أيضاً

Knowledge Distillation (KD) is a model-agnostic technique to improve model quality while having a fixed capacity budget. It is a commonly used technique for model compression, where a larger capacity teacher model with better quality is used to train a more compact student model with better inference efficiency. Through distillation, one hopes to benefit from students compactness, without sacrificing too much on model quality. Despite the large success of knowledge distillation, better understanding of how it benefits student models training dynamics remains under-explored. In this paper, we categorize teachers knowledge into three hierarchical levels and study its effects on knowledge distillation: (1) knowledge of the `universe, where KD brings a regularization effect through label smoothing; (2) domain knowledge, where teacher injects class relationships prior to students logit layer geometry; and (3) instance specific knowledge, where teacher rescales student models per-instance gradients based on its measurement on the event difficulty. Using systematic analyses and extensive empirical studies on both synthetic and real-world datasets, we confirm that the aforementioned three factors play a major role in knowledge distillation. Furthermore, based on our findings, we diagnose some of the failure cases of applying KD from recent studies.
We focus on the use of proxy distributions, i.e., approximations of the underlying distribution of the training dataset, in both understanding and improving the adversarial robustness in image classification. While additional training data helps in a dversarial training, curating a very large number of real-world images is challenging. In contrast, proxy distributions enable us to sample a potentially unlimited number of images and improve adversarial robustness using these samples. We first ask the question: when does adversarial robustness benefit from incorporating additional samples from the proxy distribution in the training stage? We prove that the difference between the robustness of a classifier on the proxy and original training dataset distribution is upper bounded by the conditional Wasserstein distance between them. Our result confirms the intuition that samples from a proxy distribution that closely approximates training dataset distribution should be able to boost adversarial robustness. Motivated by this finding, we leverage samples from state-of-the-art generative models, which can closely approximate training data distribution, to improve robustness. In particular, we improve robust accuracy by up to 6.1% and 5.7% in $l_{infty}$ and $l_2$ threat model, and certified robust accuracy by 6.7% over baselines not using proxy distributions on the CIFAR-10 dataset. Since we can sample an unlimited number of images from a proxy distribution, it also allows us to investigate the effect of an increasing number of training samples on adversarial robustness. Here we provide the first large scale empirical investigation of accuracy vs robustness trade-off and sample complexity of adversarial training by training deep neural networks on 2K to 10M images.
In the univariate case, we show that by comparing the individual complexities of univariate cause and effect, one can identify the cause and the effect, without considering their interaction at all. In our framework, complexities are captured by the reconstruction error of an autoencoder that operates on the quantiles of the distribution. Comparing the reconstruction errors of the two autoencoders, one for each variable, is shown to perform surprisingly well on the accepted causality directionality benchmarks. Hence, the decision as to which of the two is the cause and which is the effect may not be based on causality but on complexity. In the multivariate case, where one can ensure that the complexities of the cause and effect are balanced, we propose a new adversarial training method that mimics the disentangled structure of the causal model. We prove that in the multidimensional case, such modeling is likely to fit the data only in the direction of causality. Furthermore, a uniqueness result shows that the learned model is able to identify the underlying causal and residual (noise) components. Our multidimensional method outperforms the literature methods on both synthetic and real world datasets.
Recent work has uncovered the interesting (and somewhat surprising) finding that training models to be invariant to adversarial perturbations requires substantially larger datasets than those required for standard classification. This result is a key hurdle in the deployment of robust machine learning models in many real world applications where labeled data is expensive. Our main insight is that unlabeled data can be a competitive alternative to labeled data for training adversarially robust models. Theoretically, we show that in a simple statistical setting, the sample complexity for learning an adversarially robust model from unlabeled data matches the fully supervised case up to constant factors. On standard datasets like CIFAR-10, a simple Unsupervised Adversarial Training (UAT) approach using unlabeled data improves robust accuracy by 21.7% over using 4K supervised examples alone, and captures over 95% of the improvement from the same number of labeled examples. Finally, we report an improvement of 4% over the previous state-of-the-art on CIFAR-10 against the strongest known attack by using additional unlabeled data from the uncurated 80 Million Tiny Images dataset. This demonstrates that our finding extends as well to the more realistic case where unlabeled data is also uncurated, therefore opening a new avenue for improving adversarial training.
80 - Ankit Raj , Yoram Bresler , Bo Li 2020
Deep-learning-based methods for different applications have been shown vulnerable to adversarial examples. These examples make deployment of such models in safety-critical tasks questionable. Use of deep neural networks as inverse problem solvers has generated much excitement for medical imaging including CT and MRI, but recently a similar vulnerability has also been demonstrated for these tasks. We show that for such inverse problem solvers, one should analyze and study the effect of adversaries in the measurement-space, instead of the signal-space as in previous work. In this paper, we propose to modify the training strategy of end-to-end deep-learning-based inverse problem solvers to improve robustness. We introduce an auxiliary network to generate adversarial examples, which is used in a min-max formulation to build robust image reconstruction networks. Theoretically, we show for a linear reconstruction scheme the min-max formulation results in a singular-value(s) filter regularized solution, which suppresses the effect of adversarial examples occurring because of ill-conditioning in the measurement matrix. We find that a linear network using the proposed min-max learning scheme indeed converges to the same solution. In addition, for non-linear Compressed Sensing (CS) reconstruction using deep networks, we show significant improvement in robustness using the proposed approach over other methods. We complement the theory by experiments for CS on two different datasets and evaluate the effect of increasing perturbations on trained networks. We find the behavior for ill-conditioned and well-conditioned measurement matrices to be qualitatively different.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا